Secure Programming A.A. 2022/2023 Corso di Laurea in Ingegneria delle Telecomnicazioni L. Python: powerful language

Paolo Ottolino

Politecnico di Bari

Secure Programming Lab: Course Program

- A. Intro Secure Programming: «Who-What-Why-When-Where-How»
- B. Building Security in: Buffer Overflow, UAF, Command Inection
- C. SwA: Weaknesses, Vulnerabilities, Attacks
- D. SwA (Software Assurance): Vulnerabilities and Weaknesses (CVE, OWASP, CWE)
- E. Security & Protection: Objectives (CIA), Risks (Likelihood, Impact), Rating Methodologies
- F. Security & Protection: Security Indicators, BIA, Protection Techniques (AAA, Listing, Duplication etc.)
- G. Architecture and Processes: App Infrastructure, Three-Tiers, Cloud, Containers, Orchestration
- H. Architecture and Processes 2: Ciclo di Vita del SW (SDLC), DevSecOps (OWASP DSOMM, NIST SSDF)
- I. Free Security Tools: OWASP (ZAP, ESAPI, etc), NIST (SAMATE, SARD, SCSA, etc), SonarCube, Jenkins
- J. Dynamic Security Test: VA, PT, DAST (cfr. VulnScanTools), WebApp Sec Scan Framework (Arachni, SCNR) :
- K. Operating Environment: Kali Linux on WSL
- L. Python: Powerful Language for easy creation of hacking tools
- M. Exercises: SecureFlag

L. Python Agenda

L.1 Python as Hacking Tool

L.2 Energy Efficiency across Programming language

L.1 Python Hacking Tools

Ethical Hacking with Python

https://www.thepythoncode.com/topic/ethical-hacking

How to Inject Code into HTTP Responses in the Network in Python

How to Make an HTTP Proxy in Python

L.1b Python Hacking Tools

Ethical Hacking with Python

https://www.thepythoncode.com/topic/ethical-hacking

How to Build a SQL Injection Scanner in Python

How to Build a XSS Vulnerability Scanner in Python

L.1c Python Hacking Tools

Ethical Hacking with Python

https://www.thepythoncode.com/topic/ethical-hacking

vered subdomain: http://video.google.com vered subdomain: http://calendar.google.com vered subdomain: http://search.google.com overed subdomain: http://admin.google.com vered subdomain: http://wap.google.com vered subdomain: http://ads.google.com vered subdomain: hte //chat.google.com vered subdomain: sites.google.com overed subdomain: ht .//download.google.com vered subdomain: http://relay.google.com vered subdomain: http://apps.google.com vered subdomain: http://files.google.com vered subdomain: http://store.google.com vered subdomain: http://sms.google.com vered subdomain: http://ipv4.google.com

How to Make a Subdomain Scanner in Python

link: link:	<pre>https://www.thepythoncode.com/article/building-network-scann https://www.thepythoncode.com/article/control-mouse-python</pre>
link:	https://www.thepythoncode.com/article/generate-read-qr-code-
link:	https://www.thepythoncode.com/article/top-python-libraries-
link:	https://twitter.com/ThePythonCode1
link:	https://www.facebook.com/thepythoncode
link:	https://www.github.com/x4nth055
link:	https://www.thepythoncode.com/author/1
link:	javascript://void(0);
link:	https://www.thepythonc
link:	https://scapy.readthed./latest/installation.html
link:	https://en.wikipedia.org. •/Address Resolution Protocol
link:	https://en.wikipedia.org/wiki/Broadcasting (networking)
link:	https://en.wikipedia.org/wiki/Classless Inter-Domain Routing
link:	https://github.com/x4nth055/pythoncode-tutorials/blob/master
link:	https://www.thepythoncode.com/article/building-arp-spoofer-u
link:	https://www.thepythoncode.com/article/make-dns-spoof-python
link:	https://en.wikipedia.org/wiki/Security_hacker
link:	https://en.wikipedia.org/wiki/Domain_Name_System
8	

How to Extract All Website Links in Python

L.2 Energy Efficiency Across Programming Language

How Does Energy, Time, and Memory Relate

Energy Efficiency, Programming Languages, Language Benchmarking, Green Software

https://greenlab.di.uminho.pt/wpcontent/uploads/2017/09/paperSLE.pdf

Energy Efficiency across Programming Languages

How Does Energy, Time, and Memory Relate?

Marco Couto

HASLab/INESC TEC

Universidade do Minho, Portugal

marco.l.couto@inesctec.pt

João Paulo Fernandes

Release/LISP, CISUC

Universidade de Coimbra, Portugal

jpf@dei.uc.pt

Rui Pereira HASLab/INESC TEC Universidade do Minho, Portugal ruipereira@di.uminho.pt

Jácome Cunha NOVA LINCS, DI, FCT Univ. Nova de Lisboa, Portugal jacome@fct.unl.pt

Abstract

This paper presents a study of the runtime, memory usage and energy consumption of twenty seven well-known software languages. We monitor the performance of such languages using ten different programming problems, expressed in each of the languages. Our results show interesting findings, such as, slower/faster languages consuming less/more energy, and how memory usage influences energy consumption. We show how to use our results to provide software engineers support to decide which language to use when energy efficiency is a concern.

CCS Concepts • Software and its engineering \rightarrow Software performance; General programming languages;

Keywords Energy Efficiency, Programming Languages, Language Benchmarking, Green Software

ACM Reference format:

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo Fernandes, and João Saraiva. 2017. Energy Efficiency across Programming Languages. In Proceedings of SLE'17, Vancouver, BC, Canada, October 23–24, 2017, 12 pages. https://doi.org/10.1145/3136014_3136031 Francisco Ribeiro, Rui Rua HASLab/INESC TEC Universidade do Minho, Portugal fribeiro@di.uminho.pt rrua@di.uminho.pt

João Saraiva HASLab/INESC TEC Universidade do Minho, Portugal saraiva@di.uminho.pt

productivity - by incorporating advanced features in the language design, like for instance powerful modular and type systems - and at efficiently execute such software - by developing, for example, aggressive compiler optimizations. Indeed, most techniques were developed with the main goal of helping software developers in producing faster programs. In fact, in the last century *performance* in software languages was in almost all cases synonymous of *fast execution time* (embedded systems were probably the single exception).

In this century, this reality is quickly changing and software energy consumption is becoming a key concern for computer manufacturers, software language engineers, programmers, and even regular computer users. Nowadays, it is usual to see mobile phone users (which are powerful computers) avoiding using CPU intensive applications just to save battery/energy. While the concern on the computers' energy efficiency started by the hardware manufacturers, it quickly became a concern for software developers too [27]. In fact, this is a recent and intensive area of research where several techniques to analyze and optimize the energy consumption of software systems are being developed. Such techniques already provide knowledge on the energy effi-

L.2a Energy Efficiency Across Programming Language

How Does Energy, Time, and Memory Relate

Software Language Engineering

design, implement and evolve software languages:

Why	Who/What	How	When	Where
Improving Productivity	Programmers	incorporating advanced features in the language design	Developing: powerful modular and type systems	This century
Efficiencing Execution	Developed Software	Reducing memory consumption, instructions	Runtime: aggressive compiler optimizations	Last century

... but the reality is quickly changing and **software energy consumption** is becoming a **key concern**

L.2b Energy Efficiency Across Programming Language

How Does Energy, Time, and Memory Relate

Software Language Engineering

design, implement and evolve software languages:

Why	Who/What	How	When	Where
Improving Productivity	Programmers	incorporating advanced features in the language design	Developing: powerful modular and type systems	This century
Efficiencing Execution	Developed Software	Reducing memory consumption, instructions	Runtime: aggressive compiler optimizations	Last century

... but the reality is quickly changing and **software energy consumption** is becoming a **key concern**

L.2c Energy Efficiency Across Programming Language How Does Energy, Time, and Memory Relate

CLBG: Computer Language Benchmarks Game

٠

٠

٠

٠

•

results

benchmarksgame-team.pages.debian.net/benchmarksgame/index.html G 🖻 🛧 The Computer Language 23.03 Benchmarks Game a free software project for comparing how a given subset of simple algorithms can be implemented in various popular "Which programming language is fastest?" programming languages. Top 5+ program performance comparisons -Go versus Java C# vs Java The project consists of: Ruby vs Python Rust versus C++ A set of very simple algorithmic problems Various implementations to the above problems in various Rust vs Go programming languages Compare measurements of a transliterated A set of unit tests to verify that the submitted program implementations solve the problem statement too simple simple A framework for running and timing the implementations Compare the "fastest" contributed programs -A website to facilitate the interactive comparison of the box plot charts

L.2d Energy Efficiency Across Programming Language

Test Design and Execution (based on CLBG)

Benchmark	Description	Input	
n-body	Double precision N-body simulation	50M	
fannkuch-	Indexed access to tiny integer	10	
redux	sequence	12	
spectral-	Eigenvalue using the power method	5,500	
norm	Generate Mandelbrot set		
mandelbrot	portable bitmap file	16,000	
pidigits	Streaming arbitrary precision arithmetic	10,000	
rogov-roduv	Match DNA 8mers and	fasta	
regex-redux	substitute magic patterns	output	
fasta	Generate and write random	25M	
10500	DNA sequences		
k-nucleotide	Hashtable update and	fasta	
K Hucleotiue	k-nucleotide strings	output	
reverse-	Read DNA sequences, write	fasta	
complement	their reverse-complement	output	
hippry-troop	Allocate, traverse and		
binary-trees	deallocate many binary trees	21	
chameneos-	Symmetrical thread rendezvous	6M	
redux	requests	61/1	
meteor-	Search for solutions to shape	2 008	
contest	packing puzzle	2,090	
throad ning	Switch from thread to thread	5014	
thread-ring	passing one token	20101	

Suite of programs

Paradigm	Languages			
Eurotional	Erlang, F#, Haskell, Lisp, Ocaml, Perl,			
Functional	Racket, Ruby, Rust;			
Imporativa	Ada, C, C++, F#, Fortran, Go, Ocaml,			
Imperative	Pascal, Rust;			
	Ada, C++, C#, Chapel, Dart , F#, Java,			
Object-	JavaScript, Ocaml, Perl, PHP, Python,			
Oriented	Racket, Rust, Smalltalk, Swift,			
	TypeScript;			
Sorinting	Dart, Hack, JavaScript, JRuby, Lua, Perl,			
Scripting	PHP, Python, Ruby, TypeScript;			

Suite of languages

(having free available compilers \rightarrow 27)

→ The Energy Consumption

Is calculated by the energy consuption of the system call (RAPL: Running Average Power Limit)

L.2e Energy Efficiency Across Programming Language

The greenest Language is C

Python requires about **76** time the **energy** of **C** for executing the same activity

Python takes about **72** more **time** than **C** for executing the same activities

Python asks for about **2-3** times the size of **memory** required by **P** for executing the same activities (Java 6)

	Energy		Time			Mb
(c) C	1.00	(c) C	1.00	1	(c) Pascal	1.00
(c) Rust	1.03	(c) Rust	1.04		(c) Go	1.05
(c) C++	1.34	(c) C++	1.56		(c) C	1.17
(c) Ada	1.70	(c) Ada	1.85		(c) Fortran	1.24
(v) Java	1.98	(v) Java	1.89		(c) C++	1.34
(c) Pascal	2.14	(c) Chapel	2.14		(c) Ada	1.47
(c) Chapel	2.18	(c) Go	2.83		(c) Rust	1.54
(v) Lisp	2.27	(c) Pascal	3.02		(v) Lisp	1.92
(c) Ocaml	2.40	(c) Ocaml	3.09		(c) Haskell	2.45
(c) Fortran	2.52	(v) C#	3.14		(i) PHP	2.57
(c) Swift	2.79	(v) Lisp	3.40		(c) Swift	2.71
(c) Haskell	3.10	(c) Haskell	3.55		(i) Python	2.80
(v) C#	3.14	(c) Swift	4.20		(c) Ocaml	2.82
(c) Go	3.23	(c) Fortran	4.20		(v) C#	2.85
(i) Dart	3.83	(v) F#	6.30		(i) Hack	3.34
(v) F#	4.13	(i) JavaScript	6.52		(v) Racket	3.52
(i) JavaScript	4.45	(i) Dart	6.67		(i) Ruby	3.97
(v) Racket	7.91	(v) Racket	11.27		(c) Chapel	4.00
(i) TypeScript	21.50	(i) Hack	26.99		(v) F#	4.25
(i) Hack	24.02	(i) PHP	27.64		(i) JavaScript	4.59
(i) PHP	29.30	(v) Erlang	36.71		(i) TypeScript	4.69
(v) Erlang	42.23	(i) Jruby	43.44		(v) Java	6.01
(i) Lua	45.98	(i) TypeScript	46.20		(i) Perl	6.62
(i) Jruby	46.54	(i) Ruby	59.34		(i) Lua	6.72
(i) Ruby	69.91	(i) Perl	65.79		(v) Erlang	7.20
(i) Python	75.88	(i) Python	71.90		(i) Dart	8.64
(i) Perl	79.58	(i) Lua	82.91		(i) Jruby	19.84

