
Secure Programming
A.A. 2022/2023

Corso di Laurea in Ingegneria delle Telecomnicazioni

I. Free Security Tools

Paolo Ottolino

Politecnico di Bari



Secure Programming Lab: Course Program

A. Intro Secure Programming: «Who-What-Why-When-Where-How»

B. Building Security in: Buffer Overflow, UAF, Command Inection

C. SwA: Weaknesses, Vulnerabilities, Attacks

D. SwA (Software Assurance): Vulnerabilities and Weaknesses (CVE, OWASP, CWE)

E. Security & Protection: Objectives (CIA), Risks (Likelihood, Impact), Rating Methodologies

F. Security & Protection: Security Indicators, BIA, Protection Techniques (AAA, Listing, Duplication etc.)

G. Architecture and Processes: App Infrastructure, Three-Tiers, Cloud, Containers, Orchestration

H. Architecture and Processes 2: Ciclo di Vita del SW (SDLC), DevSecOps (OWASP DSOMM, NIST SSDF)

I. Free Security Tools: OWASP (ZAP, ESAPI, etc), NIST (SAMATE, SARD etc.)

J. Dynamic Security Test: VA, PT, DAST (cfr. VulnScanTools), WebApp Sec Scan Framework (Arachni, SCNR) :

K. Operating Environment: Kali Linux on WSL

L. Python: Powerful Language for easy creation of hacking tools

M. Exercises: SecureFlag



H. Free Security Tools
Agenda

I.1 Recap & Shutters

I.2 Shutters drill down

I.3 Tools



I.1 Free Security Tools: Recap
Secure Programming Arguments

Goals Techniques Measures Approaches Abstractions

CIA
(Attacker Profiles)

Protection Criteria:
• Filtering
• Hiding
• Logging

Risk Rating
• SLExARO (likelihood)
• BIA
• Framework Checklist

Risk Remediation
• Avoid
• Transfer
• Mitigate
• Accepts

Indicators
• KPI
• KGI
• SLA
• etc.

Attack Lifecycle:
• Cyber Kill Chain
• MITRE ATT&CK

Vulnerability
• Lifecycle
• Security Bulletins CVE / CVSS OWASP Top10

CWE
RFC 4949 
(Glossary)

Containers 
(Orchestration)

CSMA
ZTA Pillars

Responsibility
Sharing
• IaaS
• PaaS
• SaaS

DevOps
SecDevOps

SDO Maturity
Model

Secure Coding 
Practices

Code Bugs
• BOF
• UAF
• Uncontrolled Input Bugs & Exploits

Input Validation
• Checking Whitelist
• Sanitizing Escape
• Checking Blacklist
• Sanitizing Blacklist Shift Left

Cybersecurity

Weaknesses

Proactive Design

Defensive Coding



I.1a Free Security Tools: Recap
from Arguments to Shutters



I.1b Free Security Tools: Recap
from Arguments to Shutters



I.1c Free Security Tools: Shutters
Secure Programming Shutters

Know Reduce Evaluate Execute Process

Attackers Protection Risk Rating Risk Mgmt

Monitor
Plan

CVE SCA CVSS Vulnerability Mgmt

Test
Release

CSMA ZTA (Pillars)
DAST

Architecture Mgmt

Deploy
Operate

(Audit) Log Access Control
SAST

Input Mgmt

Code
Build

SOAR IGA KPI

Cybersecurity

Weaknesses

Proactive Design

Defensive Coding

Identities EndPoint Network Services Data

Zero 

Trust Architecture

ZTIA ZTEA ZTNA ZTSA ZTDA

Visibility & Analytics: understanding & improving IT Environment

Automation & Orchestration: dynamic workflow management 

M
FA

Sm
ar

t 
C

ar
d

Identities EndPoints/Devices Network Workload Data

Zero 

Trust Architecture

C
o

n
d

it
io

n
al

 A
cc

es
s

C
o

n
fi

gu
ra

ti
o

n
: G

P
O

P
at

ch
in

g:
 W

SU
S,

 I
n

tu
n

e

A
IP

: I
n

fo
 P

ro
te

ct
io

n

D
ef

e
n

d
er

 f
o

r 
En

d
p

o
in

t

Lo
g 

A
n

al
ys

is
, S

IE
M

Se
c 

O
p

s 
&

 R
es

p
o

n
se

Se
gm

en
ta

ti
o

n

Fi
le

ri
n

g,
 V

P
N

, D
D

o
S

ZTIA ZTEA ZTNA ZTWA ZTDA

Governance: set of rules and indicators for command & control

Identify

Protect

Detect

Respond 

Recover

Functions

Asset Management 

ID.AM

Business Environment

ID.BE

Risk Assessment

ID.RA

Risk Management Strategy

ID.RM

Supply Chain Risk Management

ID.SC

Identity Management, 

Authentication, and Access 

Control 

PR.AC

Awareness and Training

PR.AT

Data Security

PR.DS

Information Protection 

Processes and Procedures 

PR.IP 

Maintenance

PR.MA 

Protective Technology

PR.PT

Anomalies and Events

DE.AE

Security Continuous Monitoring 

DE.CM

Detection Processes

DE.DP

Response Planning

RC.RP 

Communications

RC.CO 

Analysis

RS.AN 

Mitigation

RS.MI

Improvements

RS.MI

Recovery Planning

RC.RP 

Improvements

RC.IM 

Communications

RC.CO 

Categories



I.1d Free Security Tools: Shutters
Secure Programming Shutters

Know Reduce Evaluate Execute Process
Attackers
• Profile
• Trends
• Motive
• Opportunity
• Means

Protection
• AAA
• Duplicate
• Filter
• Log
• Encode

Risk Rating
• Likelihood
• Impact
• Level

Risk Mgmt
• Avoid
• Transfer
• Mitigate
• Accepts

Monitor
Plan

CVE
• Description
• Severity
• References
• Weaknesses
• Configuration

SCA
• Identify
• Dependences
• Vulnerability 
• OSInt, CLOSInt
• Speed

CVSS
• Exploitability
• Impact
• Scope

Vulnerability Mgmt
• Substitute
• Virtual Patch
• Patch
• Ignore/Postpone

Test
Release

CSMA
• Users
• Cloud/On-premise
• Network
• Application
• Data

ZTA (Pillars)
• Identity
• Endpoint
• Network
• Workload
• Data

DAST
• Explore
• Test
• Evaluate

Architecture Mgmt
• WAF
• Supplier
• Implement
• Ignore/Postpone

Deploy
Operate

(Audit) Log
• Date, Time
• User, Device
• Net Addr, Prot
• Location
• Event/Activity

Access Control
• Identify
• AuthN
• AuthZ
• Govern (Certify)
• Monitor

SAST
• Scan
• Prioritize
• Verify

Input Mgmt
• Checking Whitelist
• Sanitizing Escape
• Checking Blacklist
• Sanitizing Blacklist

Code
Build

SOAR IGA KPI

Cybersecurity

Weaknesses

Proactive Design

Defensive Coding



I.2b Drill Down: Software Composition Analysis 
5 SCA challenges

1. Obscured visibility

2. Understanding the 
dependency logic

3. Drowning in vulnerabilities

4. vulnerability database

5. Speed

https://snyk.io/series/open-source-security/software-composition-analysis-sca/
https://www.paloaltonetworks.com/cyberpedia/what-is-sca

https://snyk.io/series/open-source-security/software-composition-analysis-sca/
https://www.paloaltonetworks.com/cyberpedia/what-is-sca


I.2c Drill Down: Statis Application Security Testing 
7 Stages of SAST

1. (Code)

2. Scan

3. Prioritize

4. (Understand)

5. (Learn) 

6. (Fix)

7. Rescan/Verify

https://snyk.io/learn/application-security/static-application-security-testing/

https://snyk.io/learn/application-security/static-application-security-testing/


I.2d Drill Down: Dynamic Application Security Testing 
Using Zed Attack Proxy

1. Passive Scan: the intended applications under 
assessment are being intercepted by the tool & 
those requests / responses are observed by the tool 
to flag security misconfigurations such as missing 
security headers or cookie settings. The tool doesn’t 
send any new requests on its own in this phase, it 
just analyses the intercepted requests / responses.

2. Active Scan: the intended applications under 
assessment are attacked by the tool by sending new 
requests with malicious payloads to discover security 
violations.The tool flags the violations based on its 
behaviour / received responses from the server after 
injecting malicious payloads. These payloads are 
introduced by the tool after we complete 
intercepting the application journeys that we want to 
test so they act as a baseline for the tool to start 
sending new requests with new payloads.

https://gotowebsecurity.com/dynamic-application-security-testing-dast-using-owasp-zap-v2-9-0/

https://gotowebsecurity.com/dynamic-application-security-testing-dast-using-owasp-zap-v2-9-0/


I.2e Drill Down: Security Orchestration and Automation 
SIEM and SOAR

SIEM and SOAR work together, enabling you to detect, 
investigate, and respond quickly and confidently to critical 
cybersecurity threats across your organization:

• Unifying threat & telemetry data across disparate 
sources

• Identifying event and alert trends

• Prioritizing alerts to minimize false positives

• Simplifying compliance and reporting obligations

• Building playbooks that orchestrate the critical tools you 
rely on

• Rapidly assessing scenarios and quantifying their impact 
on your organization

• Streamlining incident response through a single, 
customizable interface

• Automating routine and repeatable incident response 
tasks and workflows



I.3a OWASP
Tools

OWASP Tools

•OWASP Amass is a penetration testing tool for mapping the target application’s attack surface.

•The OWASP Zed Attack Proxy (ZAP) is a useful tool for testing web applications, comparable to widely-used penetration testing proxies such 
as Burp or Fiddler.

•OWASP WebGoat (Java), Security Shepherd (Java/Android) and OWASP Juice Shop (Node.js) are intentionally vulnerable applications to help 
practice your application security skills.

•OWASP SKF Write-Ups: https://owasp-skf.gitbook.io/asvs-write-ups/

•Dependency-Check and Dependency-Track allow automated detection of vulnerable project dependencies in a number of programming 
languages and build systems, with CI/CD integration.

OWASP Code
•The OWASP CSRFGuard protects against Cross-Site Request Forgery attacks for Java web apps.

•The OWASP ModSecurity Core Rule Set is a set of generic attack detection rules to be used with web application firewalls to protect against many common 
attacks

https://owasp.org/www-project-amass/
https://cydrill.com/devops/penetration-testing-what-it-can-and-cannot-do/
https://www.zaproxy.org/
https://owasp.org/www-project-webgoat/
https://owasp.org/www-project-security-shepherd/
https://owasp.org/www-project-juice-shop/
https://owasp-skf.gitbook.io/asvs-write-ups/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-track/
https://owasp.org/www-project-csrfguard/
https://cydrill.com/owasp/cross-site-request-forgery-csrf-past-and-future/
https://coreruleset.org/


I.3b OWASP
Labs

OWASP Security Shepherd: https://owasp.org/www-project-security-shepherd/

Beginner Guide to OWASP: https://blog.gitguardian.com/a-beginners-guide-to-owasp/

OWASP Vulnerable Flask App: https://owasp.org/www-project-vulnerable-flask-app/

OWASP VWAD (Vulnerable WebApp Directory, developed in Ruby on Rails): 
https://owasp.org/www-project-vulnerable-web-applications-directory/

GitLab SecureFlag Integration: https://gitlab.com/gitlab-org/gitlab/-
/merge_requests/111592

GitLab Partner Solution Integration – SecureFlag: https://gitlab.com/gitlab-
com/alliances/alliances/-/issues/297

web and mobile application security training 
platform

Easy introduction to the community making free 
security tools and resources

lab environment created for people who want to 
improve themselves in the field of web penetration 
testing

well maintained registry of known vulnerable web 
and mobile applications currently available, to be 
used by web developers, security auditors, and 
penetration testers to practice their knowledge and 
skills

GitLab – SecureFlag integration

https://owasp.org/www-project-security-shepherd/
https://blog.gitguardian.com/a-beginners-guide-to-owasp/
https://owasp.org/www-project-vulnerable-flask-app/
https://owasp.org/www-project-vulnerable-web-applications-directory/
https://gitlab.com/gitlab-org/gitlab/-/merge_requests/111592
https://gitlab.com/gitlab-org/gitlab/-/merge_requests/111592
https://gitlab.com/gitlab-com/alliances/alliances/-/issues/297
https://gitlab.com/gitlab-com/alliances/alliances/-/issues/297


I.3c OWASP
Documentation

OWASP Documentation
•The Top Ten is a very important document to learn more about the most critical web application security risks. Find the 
current version at owasp.org.

•The OWASP Cheat Sheet Series condenses the most important things to know about various vulnerabilities – as well as 
security features – into an easily-digestible format. It is also reasonably up-to-date.

•The OWASP Security Knowledge Framework provides guidance for designing secure web applications.

•For testers, the OWASP Application Security Verification Standard as well as the OWASP Web Security Testing Guide and 
the Mobile Security Testing Guide give guidance about what to target during a security test, and – more importantly – how to 
test for certain weaknesses.

•The OWASP Software Assurance Maturity Model (SAMM) is one of the commonly-used methodologies to build security into 
your software development process (alongside BSIMM and Microsoft SDL).

•DevSecOps Maturity Model: https://owaspsamm.org/presentations/SUD2021/SAMM_DevSecOps_Maturity_Model.pdf

https://cydrill.com/owasp/the-owasp-top-ten-what-it-is-and-isnt/
https://owasp.org/www-project-top-ten/
https://cheatsheetseries.owasp.org/
https://owasp.org/www-project-security-knowledge-framework/
https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-mobile-security-testing-guide/
https://owasp.org/www-project-samm/
https://www.bsimm.com/
https://www.microsoft.com/en-us/securityengineering/sdl
https://owaspsamm.org/presentations/SUD2021/SAMM_DevSecOps_Maturity_Model.pdf


I.3d OWASP
SAMM https://owasp.org/www-project-samm/

OWASP Software Assurance Maturity Model

https://owasp.org/www-project-samm/


I.3e NIST
SAMATE Tools https://www.nist.gov/itl/ssd/software-quality-group/samate

Software Assurance Metric And Tool Evaluation 

•SARD: Software Assurance Reference Dataset (https://samate.nist.gov/SARD/) 
growing collection of test programs with documented weaknesses

•SATE: Static Analysis Tool Exposition (https://www.nist.gov/itl/ssd/software-quality-
group/samate/static-analysis-tool-exposition-sate) recurring non-competitive study of 
static analysis tool effectiveness, aiming at improving tools and increasing public 
awareness and adoption

•BF: the Bug Framework (https://samate.nist.gov/BF/) classifying software bugs and 
weaknesses to allow precise descriptions of vulnerabilities that exploit them

https://www.nist.gov/itl/ssd/software-quality-group/samate
https://samate.nist.gov/SARD/
https://www.nist.gov/itl/ssd/software-quality-group/samate/static-analysis-tool-exposition-sate
https://www.nist.gov/itl/ssd/software-quality-group/samate/static-analysis-tool-exposition-sate
https://samate.nist.gov/BF/


I.3f NIST
SSDF https://csrc.nist.gov/Projects/ssdf

Secure Software Development Framework 
set of fundamental, sound, and secure software development practices based on 
established secure software development practice documents from organizations 
such as BSA, OWASP, and SAFECode.

https://csrc.nist.gov/Projects/ssdf


I.3g Other
Tools

•PortSwigger (Creator of Burp suite) - Web Security Academy: 
https://portswigger.net/web-security

•(Web) AppSecMap: https://appsecmap.com/AppSecMap

•TreathRay (Malware Code Reuse Analysis): 
https://threatray.com/blog/linking-and-tracking-uac-0056-
tooling-through-code-reuse-analysis/

https://portswigger.net/web-security
https://appsecmap.com/AppSecMap
https://threatray.com/blog/linking-and-tracking-uac-0056-tooling-through-code-reuse-analysis/
https://threatray.com/blog/linking-and-tracking-uac-0056-tooling-through-code-reuse-analysis/


I.3h Other
XSS Labs

•Google XSS Game - https://xss-game.appspot.com/

•A comprehensive tutorial on cross-site scripting: https://excess-xss.com/

•Reddit XSS: https://www.reddit.com/r/xss/

https://xss-game.appspot.com/
https://excess-xss.com/
https://www.reddit.com/r/xss/

	Slide 1: Secure Programming A.A. 2022/2023 Corso di Laurea in Ingegneria delle Telecomnicazioni I. Free Security Tools
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

