
Secure Programming
A.A. 2022/2023

Corso di Laurea in Ingegneria delle Telecomnicazioni

H. Architecture & Processes 2

Paolo Ottolino

Politecnico di Bari

Secure Programming Lab: Course Program

A. Intro Secure Programming: «Who-What-Why-When-Where-How»

B. Building Security in: Buffer Overflow, UAF, Command Inection

C. SwA: Weaknesses, Vulnerabilities, Attacks

D. SwA (Software Assurance): Vulnerabilities and Weaknesses (CVE, OWASP, CWE)

E. Security & Protection: Objectives (CIA), Risks (Likelihood, Impact), Rating Methodologies

F. Security & Protection: Security Indicators, BIA, Protection Techniques (AAA, Listing, Duplication etc.)

G. Architecture and Processes: App Infrastructure, Three-Tiers, Cloud, Containers, Orchestration

H. Architecture and Processes 2: Ciclo di Vita del SW (SDLC), DevSecOps (OWASP DSOMM, NIST SSDF)

I. Free Security Tools: OWASP (ZAP, ESAPI, etc), NIST (SAMATE, SARD, SCSA, etc), SonarCube, Jenkins

J. Dynamic Security Test: VA, PT, DAST (cfr. VulnScanTools), WebApp Sec Scan Framework (Arachni, SCNR) :

K. Operating Environment: Kali Linux on WSL

L. Python: Powerful Language for easy creation of hacking tools

M. Exercises: SecureFlag

Development Framework

H.0 SDLC: SW Development Lifecycle

H.1 DevOps: Introduction, CI/CD

H.2 DevSecOps: Manifesto, Phases, Maturity, Tools

H.3 Framework: OWASP DSOMM, NIST SSDF

H.0 SDLC: Development Lifecycle
SW Development Methodologies

Developing…

Waterfall is a linear
system of working that
requires the team to
complete each project
phase before moving on
to the next one

Agile encourages the
team to work
simultaneously on
different phases of the
project.

Methodology Approach Flexibility Requires

Waterfall Hands-off; goals and outcome
established from the beginning

Low Completing deliverables to progress to the
next phase

Agile Frequent stakeholder interaction High Team initiative and short-term deadlines

H.0 SDLC: Development Lifecycle
CI/CD Pipelines Overview (see GitLab About)

Continuous Integrazione / Continous Delivering

• falls under DevOps (the
joining of development
and operations teams)
•combines the practices
of continuous
integration and
continuous delivery.
•automates much or all
of the manual human
intervention
traditionally needed to
get new code from a
commit into production,
encompassing the
phases:

•build,
• test (including integration tests, unit tests, and regression tests),
•deploy phases
• infrastructure provisioning.

With a CI/CD pipeline, development teams can make changes to code that are then automatically tested and pushed out for delivery and
deployment.

https://about.gitlab.com/topics/ci-cd/

H.0 SDLC: Development Lifecycle
CI/CD Pipelines Overview (see GitLab About)

CI/CD fundmentals

•SCM (Source Code
Management): single
source repository
•Branchless: frequent
check-ins to main
branch. Avoid sub-
branches
•Automated builds:
script for building from
a single command
•Self-testing builds: test
failure implies failed
build
• Frequent iterations:
better than major
changes
•Stable testing
environments: clone of
the environment
•Maximum visibility: latest executables accessible by every developer
•Predictable deployments anytime: routine and low-risk deployment performable anytime

https://about.gitlab.com/topics/ci-cd/

H.0 SDLC: Development Lifecycle
DevOps

Developing…

1. Code: The first step in this DevOps lifecycle is
coding. In this step, the developers write the code
on any platform to develop the product for a
customer.

2. Build: The second step is to build where the basic
version of the product is built using a
suitable programming language.

3. Test: The third step test where the built products
are tested using the automation testing tools such
as Selenium web driver, selenium RC, Bugzilla, etc.

4. Release: This step involves planning, scheduling, and controlling the built process in a different environment.
5. Deploy: All the deployment products and files are executed on the server.
6. Operate: After the deployment of the product or application, it is delivered to the customer for use where he uses that

product or application for daily life purposes.
7. Monitor: In this step, the delivered products or application to a user has been monitored to note any uptime and

downtime failures or errors.
8. Plan: After monitoring, it gathers all the information and feedback from the customer and plans the changes needed to

improve it.

https://www.educba.com/what-is-a-programming-language/

H.1 DevOps: Introduction
Automate Security into CI/CD Pipelines with Jenkins- Introduction to DevSecOps

1. DevOps Concepts: What is? What problems it is trying to solve

2. Continous Integration (CI): What is, Phases

3. Continous Delivery (CD): What is, Phases

4. Continous Deployment (CI/CD): What is, Where and How deploy the solution

5. Security Challenge: secure the CI/CD pipeline

6. Shift Left: secure products/solutions in early phases

https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b
https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b?lessonId=54280f83-a379-4071-ade3-a0ea8c5dcbb1

https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b
https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b?lessonId=54280f83-a379-4071-ade3-a0ea8c5dcbb1

H.1.1. DevOps Concepts: definition

DevOps: practice for increasing Communication, Collaboration and Integration between

Development (Dev) → Quality Assurance (QA) → Operations (Ops) teams.

H.1.1. DevOps Concepts: main goal (problem to solve)

DevOps Goal (Why): reduce Lead Time

Lead Time: time intercurring from the initial Idea to the product/solution Release into the market

H.1.1. DevOps Concepts: Cycle (Application Life Cycle Management) 1/2

DevOps Mean: reduce step duration (mainly by automation)

Continous Improvement: enhancing the steps, by introducing more and more automation

F1.1. DevOps Concepts: Cycle (App Life Cycle Management) 2/2

1. Plan: Conceiving the business idea. Scheduling, based on the original business idea (e.g.
integration needs, number of stakeholders, implementation difficulty, etc)

2. Code: put the functional requirements in code (depending on programming language).

3. Build: depending on the programming language

4. Test: validation of code (to be compliant to functional and non-functional requirements)

5. Release: delivery the code to the release manager (into repository)

6. Deploy: into staging (non-production) and production environments.

7. Operation: Mantain and Manage the environments

8. Monitor: Check and Measure Application Usage

Continous Improvement: enhancing the steps, by introducing more and more automation

H.1.1. DevOps Concepts: Continous Flow (Continous Improvement)

#1 Continous Integration: Check out the code.

Run unit and integrations tests.

When ok, merge it on the main branch.

#2 Continous Delivery: deliver artifacts to the repository,
automatically

#3 Continous Deployment: when new
artifacts arrived automatically, deploy to

production.

H.1.2. Continous Integration (CI) 1/3

Code Merging: developed by by multiple
developers, several times in a day

Code Check: code quality tools, syntax/lynter
checkers, code review tools

Automatic Testing: Test-Driven Development (TDD)

Early Detection: the team can identify problems in
early stage

Deployability: deployable artifact at the end pf the
stage

H.1.2. Continous Integration (CI) 2/3
Requirements

1. Version Control System (es. Git): developed by by multiple developers, several times in a day
• Distributed Development Capabilities

• User Auth, AuthZ

• Commit Audit: History Mechanism for all changes

2. Build Tool (CI Tool/Server)
• Dependency Resolver (es. Ant, Maven) for package/lib management

• Reproducible Building Blocks

• Orchestration/Pipeline Generation (es. Jenkin, GoCD, CircleCI, TeamCity)

3. Artifact Repository Manager (es. Sonatype Nexus, Jfrog)
• Caching packages/libs

• User Auth, AuthZ

• Tagging, versioning, storage

H.1.2. Continous Integration (CI) 3/3
Best Practices

1. Single Code Repository: while frequent Code Check-In

2. Indepedent/Parallel Work: Multi-developer with own features/local branches

3. Automatic Builds and Tests

4. Commit→ Build. Each commit should trigger a build (fixed immediately if broken)

5. Short Building Time (say, 10 minutes)

6. Shared Build Result (Succes or Failure): to the team

7. Automated Test: environment creation, test execution

8. Dashboard: providing report on what is heppening

H.1.3. Continous Delivery (CD) 1/3
Automatize the Delivery Process (obtaining Artifact at the End)

• Practice of automating the entire SW release
process and getting artifacts on repository
and non-prod environments

• Artifact: different types, depending on target
deploymment environment (also based on
programming language)

• Es. Artifactory: Sonatype Nexus, Jfrog

H.1.3. Continous Delivery (CD) 2/3
Automatize the Delivery Process (obtaining Artifact at the End)

• Artifactories: store different kinds of artifact packages (e.g. npm, docker
image, mvn dependencies, rpm, etc)

• Integrated Code: in deployable state of the production

• Manual Approval: the artifact can be deployed to production, since it
passed all tests (Integration, User Acceptance, Law, Performance).
Business Decision➔ Human intevention (Release Mgr, Change Mgr, etc)

H.1.3. Continous Delivery (CD) 3/3
Differences between Continous Integration, Continous Delivery, Continous Deployment

• Continous Integration: the SW is continously tested

• Continous Delivery: the Business is involved in SW deployment

• Continous Deployment: the SW is continously deployed, without Business Intervention

H.1.4. Continous Deployment 1/3
Automatize the Deployment Process (getting code and directly deploying to Production)

Continous Deployment

1. The entire chain of moving code from source
repository to «Production» environment is
automated

2. No manual approval (no human intervention by
Business)

3. Artifacts (images, jar, rpm, etc) are tagged when
deployed for audit and roll-back purposes

H.1.4. Continous Deployment 2/3
Deployment Process from environment to environment

Not always the tests are easy to get automatic

H.1.4. Continous Deployment 3/3
Advantages of Deployment Process

1. Increasing Development productivity and Confidence

2. Eliminating too big long live local branches

3. Reducing (minimalizing) A/B testing, getting customer feedbacks

4. Shortening productization of ideas, testing against real customer behaviours

5. Making easyer to detect and fix problems since smaller packages

6. More satisfactory experiences to customer in product/service, since continous
improvements

H.1.5. Security Challenges in CI/CD 1/2
Drawbacks in Traditional Pipelines

1. A

H.1.5. Security Challenges in CI/CD 2/2
Minimal Security Insertions (during operations)

H.1.6. Shift Left Paradigm 1/4
Security is not a dedicated team’s responsibility

H.1.6. Shift Left Paradigm 2/4
DevOps Cycle Security Review

1. Codifying Security Requirements

2. Finding a place in CI/CD for embedding
security

3. Security is a product/practice: more secure
with proper actions in the SDLC phases
(having different stakeholders)

4. Establishing scalable and repeatable
security gates

5. Saving money on fixing bugs and problems
when these are not large

6. Automating security actions (prevention,
detection, mitigation)

H.1.6. Shift Left Paradigm 3/3
DevOps Cycle Security View

Not only Penetration Test at the End of Release: Security Requirements would be
spreaded and injected into different phases:

1. Code Analysis

2. Compliance Checks

3. Vulnerability Detections

4. Secure Control Loops over all SDLC

5. Continous Monitoring (SIEM: Security Information and Event Management)

6. Continous Pattern Evaluation (IDS/IPS: Intrusion Prevention/Detection Systems)

H.1.7 Security and DevOps: Summary
DevOps Cycle Security View

1. DevOps is leaning the IT processes:
bringing smoother flow in IT processes

2. CI/CD is way to go: increasing quality of
delivery and efficiency from idealization to
a releasing product

3. Enbedding Security: the requirements
introduced and codified into different
places of CI/CD Pipelines, it is better than
acting in last minute deliveries

H.2. DevSecOps: Introduction
Automate Security into CI/CD Pipelines with Jenkins- Introduction to DevSecOps

1. DevSecOps Concepts: what is DevSecOps? What are we trying to solve?

2. DevSecOps Manifesto: what can we get from manifesto?

3. DevSecOps approach: Which Problems can be solved with?

4. Security in the CI/CD: Placing/Positioning in Pipeline Phases

5. Maturity Model: adopting the approach and find a way to adopt

6. Implementation: tool selection and strategy

H.2.1 DevSecOps: what is it?
DevSecOps NIST

NCCoE DevSecOps project:

Software Supply Chain and
DevOps Security Practices |
NCCoE (nist.gov)

https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b
https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b?lessonId=65f4f3de-214b-47cc-be59-50452cea99cd

https://www.nccoe.nist.gov/projects/software-supply-chain-and-devops-security-practices
https://www.nccoe.nist.gov/projects/software-supply-chain-and-devops-security-practices
https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b
https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b?lessonId=65f4f3de-214b-47cc-be59-50452cea99cd

H.2.1a DevSecOps: what is it?
DevSecOps Concept: Approach

DevSecOps: set of practices and mindset

to apply security

in all stages and level

of application life cycle management

within the DevOps process.

https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b
https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b?lessonId=65f4f3de-214b-47cc-be59-50452cea99cd

https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b
https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b?lessonId=65f4f3de-214b-47cc-be59-50452cea99cd

H.2.1b DevSecOps: what is it?
DevSecOps Concept: Activities

DevSecOps: other than #4 Test and #8
Monitor

• #1 Plan: more secure AuthN and
AuthZ

• #2 Code: addiction of security
requirements (es. Logging)

• #3 Build: best libraries

• # 5 Release: protective integration

• #6 Deploy: secure environment

• #7 Operate: detection integration

https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b
https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b?lessonId=65f4f3de-214b-47cc-be59-50452cea99cd

https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b
https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b?lessonId=65f4f3de-214b-47cc-be59-50452cea99cd

H.2.1c DevSecOps: what is it?
DevSecOps 6 Pillarsby CSA (Cloud Security Alliance)

https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b
https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b?lessonId=65f4f3de-214b-47cc-be59-50452cea99cd

https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b
https://codered.eccouncil.org/courseVideo/04bcb9a8-a3c3-45f3-9860-913cbdb2c40b?lessonId=65f4f3de-214b-47cc-be59-50452cea99cd

H.2.2a DevSecOps: Manifesto
SW development: Agile manifesto

https://agilemanifesto.org/

1. Satisfy Customer

2. Welcome Changing

3. Deliver SW frequently

4. Biz & Dev together

5. Motivate People

6. Conversate Face2Face

7. Progress Working SW

8. Develop Sustainably

9. Design Tech Excellence

10. Maximize Work not Done

11. Self-Organize Teams

12. Improve Effectiveness
Periodically

https://agilemanifesto.org/

H.2.2b DevSecOps: Manifesto
Security Manifesto like SW dev Agile manifesto

https://www.devsecops.org/

Name over Description

1 Leaning in Always Saying “No” More Collaboration: between Sec and Dev

2 Data & Security Science Fear, Uncertainty and Doubt (FUD) Easily Misurable: against each phase of CI/CD also about security

3 Open Contribution & Collaboration Security-Only Requirements Embed Security: Best Fit for the Company

4 Consumable Security Services with
APIs

Mandated Security Controls &
Paperwork

Codified Security Services (by API) and Measure whether the identified Security
Services fit the application needs by evaluating the API consumption

5 Business Driven Security Scores Rubber Stamp Security Evolving Security: the measures reflect the continously changing business needs

6 Red & Blue Team Exploit Testing Relying on Scans & Theoretical
Vulnerabilities

Real World Emulation: using Red Team (outside attacker) and Blue Team (inside
defender)- Continously.

7 24x7 Proactive Security Monitoring Reacting after being Informed of an
Incident

Continous Defense: security goes beyond one incident response, it should be put into
the enterprise fabric, as daily operations.

8 Shared Threat Intelligence Keeping Info to Ourselves Security Acumen Raising: each member of the software development team is a
contributing resource for a more secure computing environment.

9 Compliance Operations Clipboards & Checklists Reasoning behind the Rules: ongoing awareness, ongoing awareness of the rules,
regulations and best practices around corporate IT security, by learn and adapt.

https://www.devsecops.org/

H.2.2c DevSecOps: Manifesto
Replacing Waterfall, Manual, Siloes

https://www.devsecops.org/

1. Agile Methodology repacing Waterfall

2. QA/Testing automatic and implemented in chunks

3. Security to be merged ad QA/Testing

https://www.devsecops.org/

H.2.3a DevSecOps: Approach
Security Sign-Off: PenTest/Audit of developed SW (usually in staging environment, yet)

Waterfall: SW PenTest/Audit

Time: enough (only 1 reiteration)

Skills: possible to find

Reiteration: too expensive, in money and time

Agile Methodology: SW PenTest/Audit

Time: poor (many reiterations)

Skills: difficult to find (needs fast-testers)

Reiteration: needs for speeding-up the process

H.2.3b DevSecOps: Approach
Security Sign-Off: Problems & Resolutions

DevSecOps: other than #4 Test and #8 Monitor

• Early Identification of Vulnerabilities/Issues #6 Deploy: secure environment

• Early Fix (Cost Reduction) #2 Code: addiction of security requirements (es. Logging)

• Improved Overall Security #1 Plan: more secure AuthN and AuthZ

• Shared Responsibility (everyone is responsible, cooperating) #3 Build: best libraries

• Secure by Design (empowering developers with automation) # 5 Release: protective integration

• Not «Secured by PenTest» #7 Operate: detection integration

H.2.4a DevSecOps: CI/CD Pipeline
Application LifeCycle Management

DevSecOps: in the CI/CD pipeline

H.2.4b DevSecOps: CI/CD Pipeline
Application LifeCycle Management

DevSecOps: in the CI/CD
pipeline

• #1 Plan: more secure
AuthN and AuthZ

• #2 Code: addiction of
security requirements (es.
Logging)

• #3 Build: best libraries

• #4 Test: validation of code

• #5 Release: protective
integration

• #6 Deploy: secure
environment

• #7 Operate: detection
integration

• #8 Monitor: monitor
workloads

H.2.4c DevSecOps: CI/CD Pipeline
Merge DevOps and Security

Codify Security Requirements and streamline security controls all over the DevOps cycle

Threat Modeling
Risk Assessment

Compliance Controls

H.2.6a DevSecOps: Tooling Selection and Implementation Strategy
Dimensions of DevSecOps Maturity Model

1. DevSecOps Security Maturity
Model: identify one to be applied
and executed by the company
• No exotic: common in the market,

usable and maintained (e.g. OWASP
one)

• Agree in the company aboout
adoption

2. Tools & 3° Party Products
1. For each level in levels in Maturity

Model
2. For each phase in CI/CD
3. Already in use by Dev, QA, Operation
4. Getting suggestions (tools already

known, used) by Dev, QA, Operation

3. Put it All Together: Model + Tools
best suites to the company
• Usefulness
• (possible) Already in Use
• Required Knowledge
• Resources (systems and time)

DevSecOps Tools at U.S. General Service Administration (https://tech.gsa.gov/guides/building_devsecops_culture/)

• Consensus per Tools → ensure usage

• Deploy one Tool at once → time to learn, adapt and get familiar
with processes

• Implement each Maturity Level at once → digested by stakeholders

https://tech.gsa.gov/guides/building_devsecops_culture/

H.2.6b DevSecOps: Tooling Selection and Implementation Strategy
Merge DevOps and Security - #1 Plan

1. Best Coding Standards: for the chosen programming
language

2. Strategy for using Open-Source: due to library
vulnerabilities

3. Strategy for using 3° Party: due to library
vulnerabilities

4. Threat Model: identify and define an execution plan
suitable for the company

5. Check Compliance: compare regulations and SLA of
services, vendors and public cloud

H.2.6c DevSecOps: Tooling Selection and Implementation Strategy
Merge DevOps and Security - #2 Code

1. SAST: Static Application Security Testing, checking
source code against existing vulnerabilities

2. Code Quality: checking against the metrics defined
in the #1 Plan

3. Bad Coding: identifying security weak coding

4. Training: encourage the adoption of clean code
standards

H.2.6d DevSecOps: Tooling Selection and Implementation Strategy
Merge DevOps and Security - #3 Build

1. SCA: SW Composition Analysis, checking
open-source library dependencies against
existing vulns

2. Chain Resolution: scanning for
dependencies (Lib-A → Lib-B → Lib-C → …)

3. Scanning: Artifact Repository, Container
Images, Code Quality, Smells

H.2.6e DevSecOps: Tooling Selection and Implementation Strategy
Merge DevOps and Security - #4 Test

1. PenTest:

2. Load Testing

3. Fuzzing: Fuzz Testing (Black Box)

4. BDD: Behaviour Driven Development
testing (extension of TDD)

5. Integration Testing: internal or 3° Party API

H.2.6f DevSecOps: Tooling Selection and Implementation Strategy
Merge DevOps and Security - #5 Release

1. Artifactory Management: select and secure
• Tenancy

• Creating projects/tenants

• RBAC

• RACI matrix

2. DAST: Dynamic Application Security Testing
• OWASP ZAP

• Arachni Scanner

H.2.6g DevSecOps: Tooling Selection and Implementation Strategy
Merge DevOps and Security - #6 Deploy #7 Production

1. Infrastructure: select and secure
• VMs

• Containers

• Networks

• Storage

• RACI matrix

2. Compliance: check adherence to
requirements

H.2.6h DevSecOps: Tooling Selection and Implementation Strategy
Merge DevOps and Security - #8 Monitor

1. Centralized Logging and Monitoring:
• Log Analytics

• Log Security Pattern Detection

2. Security Threats: Monitoring
• Network and System level

• API

3. Alerting:
1. SIEM

2. SOAR

H.2.7 DevSecOps: Approach
Main Issues

Responsibility Border: No Boundaries among IT elements (O.S., Middleware, Libraries, Custom
Application, etc (Atos Development is not in charge of elements provided by other
companies/functions)

Exhaustive Integration: Insufficient identification of Security Requirements about thoroughly
meshing applications, since the analysis phase, into the customer environment in order to get
compliance, ergonomics, easy security, quick&dirty manageability, etc

Security Risk: only vulnerability exposures are encompassed. IT Risk is also about lacking
Proactive Controls, Using Know Vulnerable Components (A9), Security Misconfiguration (A5)

Testing Environment: no complete security test before installation in customer environment.
Security requirement for underpinning elements.

SW Library: Not clear utilization of standard security library (e.g. ESAPI) as default behaviour

DescriptionOWASP Proactive Controls (OPC)C

Allow developers to reuse the definition of security controls and best practicesDefine Security RequirementsC1

Embedded security help software developers guard against security-related design and implementation flawsLeverage Security Framework and
Libraries

C2

Secure queries
Secure configuration
Secure authentication
Secure communication

Secure Database AccessC3

Stop injection attacks:
• Encoding: translating special characters into something no longer dangerous in the target interpreter
• Escaping: adding a special character before the character/string to avoid it being misinterpreted

Encode and Escape DataC4

Syntax and Semantic ValidityValidate all InputsC5

Digital Identity is the unique representation of a user to be engaged in an online transaction after proper AuthImplement Digital IdentityC6

Granting or denying specific requests from a user, program, or process.
Access Control also involves the act of granting and revoking those privileges.

Enforce Access ControlC7

Data Classification
Encrypt Data in Transit
Encrypt Data at Rest

Protect Data EverywhereC8

Feeding intrusion detection systems
Forensic analysis and investigations
Satisfying regulatory compliance requirements

Implement Security Logging & MonitoringC9

Information leakage
TLS bypass
DoS

Handle All Errors and ExceptionsC10

DEV

DEV

ANALYSIS

OPS

DEV-OPS

H.2.7 DevSecOps: Approach
Main Issues

Responsibility Border: ➔ OWASP Top Ten (Top10) A1, A2, A3, A4, A6, A7, A8, A10. NO:
A5, A9.

Exhaustive Integration: ➔ OWASP Proactive Controls (OPC)

Security Risk: ➔ OWASP Risk Rating Methodology

Testing Environment: ➔ DAST on specific Testing Environment OWASP Testing
Merthodology

SW Library: ➔ OWASP ESAPI

DescriptionOWASP Proactive Controls (OPC)C

Allow developers to reuse the definition of security controls and best practicesDefine Security RequirementsC1

Embedded security help software developers guard against security-related design and implementation flawsLeverage Security Framework and
Libraries

C2

Secure queries
Secure configuration
Secure authentication
Secure communication

Secure Database AccessC3

Stop injection attacks:
• Encoding: translating special characters into something no longer dangerous in the target interpreter
• Escaping: adding a special character before the character/string to avoid it being misinterpreted

Encode and Escape DataC4

Syntax and Semantic ValidityValidate all InputsC5

Digital Identity is the unique representation of a user to be engaged in an online transaction after proper AuthImplement Digital IdentityC6

Granting or denying specific requests from a user, program, or process.
Access Control also involves the act of granting and revoking those privileges.

Enforce Access ControlC7

Data Classification
Encrypt Data in Transit
Encrypt Data at Rest

Protect Data EverywhereC8

Feeding intrusion detection systems
Forensic analysis and investigations
Satisfying regulatory compliance requirements

Implement Security Logging & MonitoringC9

Information leakage
TLS bypass
DoS

Handle All Errors and ExceptionsC10

DEV

DEV

ANALYSIS

OPS

DEV-OPS

Overall Risk Severity

CriticalHighMediumHIGH

Impact
HighMediumLowMEDIUM

MediumLowNoteLOW

HIGHMEDIUMLOW

Likelihood

H.2.7a DevSecOps: Approach
Main Issues

OWASP
Risk Rating
Methodology

DEV: Function Security Appraisal

DEV: Code Security Appraisal

DEV: Security Misconfiguration Evaluation

Phase I (Info) Phase II (SEC) Phase III (DEV) Phase V (Close)

Info Gathering:

•Business Info

•Critical Service

•Risk

Identification

SEC:

•Functional

Specs

•Secure

• Integrate

•Business

Impact

Factor

R
e
m

e
d

ia
t
io

n

M
it

ig
a
t
io

n

DEV: Vulnerable Component Evaluation

OPS: Code

Fixing

OPS: Components

Countermeasures,

Recommendations

Phase IV (OPS)

Proactive Controls

ESAPI

Top Ten

Impact

OWASP
Technical
Controls

Likelihood

Scores

H.2.7b DevSecOps: Approach
Responsibility Border

DEV

DEV

ANALYSIS

OPS

DEV-OPS

H.2.7c DevSecOps: Approach
OWASP Proactive Controls (OPC)

C OWASP Proactive Controls (OPC) Description

C1 Define Security Requirements Allow developers to reuse the definition of security controls and best practices

C2 Leverage Security Framework and
Libraries

Embedded security help software developers guard against security-related design and implementation flaws

C3 Secure Database Access Secure queries
Secure configuration
Secure authentication
Secure communication

C4 Encode and Escape Data Stop injection attacks:
• Encoding: translating special characters into something no longer dangerous in the target interpreter
• Escaping: adding a special character before the character/string to avoid it being misinterpreted

C5 Validate all Inputs Syntax and Semantic Validity

C6 Implement Digital Identity Digital Identity is the unique representation of a user to be engaged in an online transaction after proper Auth

C7 Enforce Access Control Granting or denying specific requests from a user, program, or process.
Access Control also involves the act of granting and revoking those privileges.

C8 Protect Data Everywhere Data Classification
Encrypt Data in Transit
Encrypt Data at Rest

C9 Implement Security Logging & Monitoring Feeding intrusion detection systems
Forensic analysis and investigations
Satisfying regulatory compliance requirements

C10 Handle All Errors and Exceptions Information leakage
TLS bypass
DoS

https://owasp.org/www-project-proactive-controls/v3/en/
https://owasp.org/www-project-proactive-controls/

H.2.7c1 DevSecOps: Approach
Cheat Sheets – Reference Tools 1/2

C OWASP Proactive
Controls (OPC)

Cheat Sheet Reference/Tool

C1 Define Security
Requirements

• Abuse Case Cheat Sheet
• Attack Surface Analysis Cheat Sheet
• Threat Modeling Cheat Sheet

• ASVS

C2 Leverage Security
Framework and Libraries

• Vulnerable Dependency Management Cheat Sheet • OWASP Dependency Check 4 Maven;
• Retire.js.

C3 Secure Database Access • Database CheatSheet
• Query Parameterization Cheat Sheet
• SQL Injection Prevention Cheat Sheet

C4 Encode and Escape Data • Cross Site Scripting Prevention Cheat Sheet;
• OWASP Injection Prevention Cheat Sheet in Java.

• OWASP Java Encoder;

C5 Validate all Inputs • Input Validation Cheat Sheet.

C6 Implement Digital Identity • OWASP Authentication Cheat Sheet;
• OWASP Password Storage Cheat Sheet;
• OWASP Forgot Password Cheat Sheet;
• OWASP Choosing and Using Security Question Cheat

Sheet;
• OWASP Session Manager Cheat Sheet;
• OWASP IoS Developer Cheat Sheet;

• OWASP Mobile Security Testing Guide;
• OWASP Testing for Authentication

Guide;
• NIST Special Publication 800-63

Revision 3 - Digital Identity Guidelines.

https://owasp.org/www-project-proactive-controls/
https://owasp.org/www-project-proactive-controls/
https://cheatsheetseries.owasp.org/IndexProactiveControls.html
https://cheatsheetseries.owasp.org/cheatsheets/Abuse_Case_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Attack_Surface_Analysis_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://owasp.org/www-project-application-security-verification-standard/
https://cheatsheetseries.owasp.org/cheatsheets/Vulnerable_Dependency_Management_Cheat_Sheet.html
https://jeremylong.github.io/DependencyCheck/dependency-check-maven/
https://retirejs.github.io/retire.js/
https://cheatsheetseries.owasp.org/cheatsheets/Database_Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Query_Parameterization_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Injection_Prevention_in_Java_Cheat_Sheet.html
https://owasp.org/www-project-java-encoder/
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Choosing_and_Using_Security_Questions_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Choosing_and_Using_Security_Questions_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://wiki.owasp.org/index.php/IOS_Developer_Cheat_Sheet
https://owasp.org/www-project-mobile-security-testing-guide/
https://wiki.owasp.org/index.php/Testing_for_authentication
https://wiki.owasp.org/index.php/Testing_for_authentication
https://pages.nist.gov/800-63-3/sp800-63-3.html
https://pages.nist.gov/800-63-3/sp800-63-3.html

H.2.7c2 DevSecOps: Approach
Cheat Sheets – Reference Tools 2/2

C OWASP Proactive
Controls (OPC)

Cheat Sheet Reference/Tool

C7 Enforce Access Control • OWASP Access Control Cheat Sheet;
• OWASP iOS Developer - Poor Authorization and

Authentication Cheat Sheet;
• OWASP Testing for Authorization Guide.

• OWASP ZAP
• Access Control Testing

C8 Protect Data Everywhere • OWASP TLP Cheat Sheet
• OWASP HSTS Cheat Sheet
• OWASP Cryptographic Storage Cheat Sheet
• OWASP Password Storage Cheat Sheet
• OWASP IOS Developer - Insecure Data Storage Cheat

Sheet

• Ivan Ristic: SSL/TLS Deployment Best Practices
• OWASP Testing Guide: Testing for TLS
• SSLyze - scanning library and CLI tool
• SSLLabs - scan and checkTLS/SSL conf
• OWASP O-Saft TLS Tool - TLS test tool
• GitRob - find sensitive info on GitHub
• TruffleHog - Searches for secrets accidentally committed
• KeyWhiz - Secrets manager
• Hashicorp Vault - Secrets manager
• Amazon KM - Manage keys on Amazon AWS

C9 Implement Security Logging
& Monitoring

• OWASP Logging Cheat Sheet
• OWASP Application Logging Vocabulary Cheat Sheet

• OWASP Log injection
• Apache Logging Services

C10 Handle All Errors and
Exceptions

• OWASP REST Security Cheat Sheet (Error Handling)
• OWASP Error Handling Cheat Sheet

• OWASP Code Review Guide: Error Handling
• OWASP Testing Guide: Testing for Error Handling
• OWASP Improper Error Handling
• CWE 209: Information Exposure Through an Error Message
• CWE 391: Unchecked Error Condition

https://owasp.org/www-project-proactive-controls/
https://owasp.org/www-project-proactive-controls/
https://cheatsheetseries.owasp.org/IndexProactiveControls.html
https://cheatsheetseries.owasp.org/cheatsheets/Access_Control_Cheat_Sheet.html
https://wiki.owasp.org/index.php/IOS_Developer_Cheat_Sheet#Remediations_5
https://wiki.owasp.org/index.php/IOS_Developer_Cheat_Sheet#Remediations_5
https://wiki.owasp.org/index.php/Testing_for_Authorization
https://owasp.org/www-project-zap/
https://github.com/zaproxy/zap-extensions/wiki/HelpAddonsAccessControlConcepts
https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security_Cheat_Sheet
https://www.owasp.org/index.php/Cryptographic_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/IOS_Developer_Cheat_Sheet#Insecure_Data_Storage_.28M1.29
https://www.owasp.org/index.php/IOS_Developer_Cheat_Sheet#Insecure_Data_Storage_.28M1.29
https://www.ssllabs.com/projects/best-practices/index.html
https://www.owasp.org/index.php/Testing_for_Weak_SSL/TLS_Ciphers,_Insufficient_Transport_Layer_Protection_(OTG-CRYPST-001)
https://github.com/nabla-c0d3/sslyze
https://www.ssllabs.com/ssltest/
https://www.owasp.org/index.php/O-Saft
https://github.com/michenriksen/gitrob
https://github.com/dxa4481/truffleHog
https://github.com/square/keywhiz
https://www.vaultproject.io/
https://aws.amazon.com/kms/
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Application_Logging_Vocabulary_Cheat_Sheet.html
https://www.owasp.org/index.php/Log_Injection
https://logging.apache.org/
https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html#error-handling
https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html
https://www.owasp.org/index.php/Error_Handling
https://www.owasp.org/index.php/Testing_for_Error_Handling
https://www.owasp.org/index.php/Improper_Error_Handling
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/391.html

H.2.7d DevSecOps: Approach
Security Risk

E4g Security Risk: Rating
OWASP Risk Rating Methodology - Estimation

Step 4: Determining the Severity of the Risk
The likelihood estimate and the impact estimate are put together to calculate an overall severity for this risk.

Determining Severity
The tester can now combine the likelihood and
impact estimates to get a final severity rating for
this risk.
If there is good business impact information, it is
better to use that instead of the technical impact
information

Likelihood and Impact Levels

LOW0 to <3

MEDIUM3 to <6

HIGH6 to 9

Overall Risk Severity

CriticalHighMediumHIGH

Impact
HighMediumLowMEDIUM

MediumLowNoteLOW

HIGHMEDIUMLOW

Likelihood

In the example:
Overall Likelihood = 4.375 (MEDIUM)
Business Impact = 2.250 (LOW)

H.2.7e DevSecOps: Approach
Risk among phases

OWASP Risk Rating
Methodology

DEV: Function Security Appraisal

DEV: Code Security Appraisal

DEV: Security Misconfiguration Evaluation

Phase I (Info) Phase II (SEC) Phase III (DEV) Phase V (Close)

Info Gathering:

•Business Info

•Critical Service

•Risk

Identification

SEC:

•Functional

Specs

•Secure

• Integrate

•Business

Impact

Factor

R
e
m

e
d

i
a
t
i
o

n

M
i
t
i
g

a
t
i
o

n

DEV: Vulnerable Component Evaluation

OPS: Code

Fixing

OPS: Components

Countermeasures,

Recommendations

Phase IV (OPS)

H.2.7e DevSecOps: Approach
DAST on specific testing environment

H.3 DevSecOps: Framework
Benefit of Maturity Models

• Strategy: placing
• Abstration Chart for Higher Management
• Factual Requirements for Security Manager
• Technical Guidance for employee

• Path: drawing a path for further
improvements
• Clear goals for everyone in the organization
→ target

• Allowing continous improvements→
milestones

• Evaluation: checkpoints for meeting
objectives
• Metrics for objectiveness
• Proactive (continously improving) not more

Reactive (acting on security issues)

• Visibility: risk determination
• Prioritization of the weak spots to be

strenghtened

• Savings: remove redundancies
• Replacements needs
• Processes (people skills, technologies)

H.3a DevSecOps: OWASP DSOMM
Levels of DevSecOps Maturity Model

OWASP: https://owasp.org/www-project-devsecops-maturity-model/

DSOMM: Dev Sec Ops Maturity Model

4 Levels:

1. Basic Understanding of Security Practices: basic GRC,
some controls in development environment

2. Adoption of Basic Security Practices: login audit, static
check, hardening

3. High Adoption of Security Practices: Infrastructure as
Code (IaC), Dashboard (advanced metrics), Code Signing

4. Advanced Deployment of Security Practices at Scale:
improving Advanced Threat Model and History, Defense
Metrics

https://owasp.org/www-project-devsecops-maturity-model/

H.3a1 DevSecOps: OWASP DSOMM
Dimensions of DevSecOps Maturity Model

Dimension Sub-Dimension

Build and Deployment Build
Deployment
Patch Management

Culture and Organization Design
Education and Guidance
Process

Implementation Application Hardening
Development and Source Control
Infrastructure Hardening

Information Gathering Logging
Monitoring

Test and Verification Application Tests
Consolidation
Dynamic/Static Depth for Applications/Infrastrucure
Test-Intensity

https://dsomm.timo-
pagel.de/

https://dsomm.timo-pagel.de/
https://dsomm.timo-pagel.de/

H.3b OpenSAMM and its descendants
Software Assurance Maturity Model

OpenSAMM: https://www.opensamm.org/

OpenSAMM was created by Pravir
Chandra and sponsored by Fortify.
Fortify has then donated
OpenSAMM to the OWASP
community. Both BSIMM and
SAMM originate from OpenSAMM.
Both models still contain some
similarities, but follow different
approaches to application security.

https://www.opensamm.org/

H.3b1 OpenSAMM and its descendants
Building Security In Maturity Model (BSIMM)

BSIMM: https://www.synopsys.com/software-integrity/software-security-services/bsimm-maturity-model.html

BSIMM is a maturity model that helps organizations
plan, implement and measure their software
security assurance programme. BSIMM consists of
4 domains split in 12 practices and containing a
total of 125 security activities. So think of pen
testing, patching, monitoring tools and threat
modeling as some of these 125 activities you could
(but not always should) do in your security
assurance programme. Here is a structural
overview of the BSIMM13 domains and practices.

BSIMM is not only the framework, but is also a
measuring stick in the industry. BSIMM comes with
an objective assessment of the different activities
in 130 organizations from 8 industry verticals
(financial services, independent software vendors,
technology, healthcare, cloud, Internet of Things,
insurance, and retail).

https://www.synopsys.com/software-integrity/software-security-services/bsimm-maturity-model.html

H.3b2 OpenSAMM and its descendants
Software Assurance Maturity Model (SAMM)

BSIMM: https://owasp.org/www-project-samm/

SAMM is a maturity model
that provides an effective
and measurable way for all
types of organizations to
analyze and improve their
software security posture.
SAMM consists of 5
business functions split
over 15 security practices
and containing a total of
90 security activities. Here
is a structural overview of
SAMM functions and
practices.

SAMM is planned to include the upcoming Benchmarking project that will also
allow one to compare your own security posture with the rest of the industry.

https://owasp.org/www-project-samm/

H.3c NIST SSDF (NIST SP800-218)
Secure Software Development Framework - https://csrc.nist.gov/publications/detail/sp/800-218/final

NIST SSDF is a security assurance programme to be
integrated within the software development lifecycle
(SDLC).

SSDF consists of 19 security practices divided across 42
tasks, covering 42 topics in software security to get the
attestation required by the Feds. These are about
security best practices. Examples include:

• mandatory and role-specific security trainings for the
team,

• identifying and documenting all security
requirements,

• running threat modeling and risk assessment
exercises.

Security assurance frameworks are relatively abstract to
remain applicable. But NIST SSDF has a complete
mapping to OWASP SAMM. Inversely, SAMM has a
complete mapping to SSDF.

➔ implement SAMM and automatically check SSDF
compliance.

https://csrc.nist.gov/publications/detail/sp/800-218/final

	Slide 1: Secure Programming A.A. 2022/2023 Corso di Laurea in Ingegneria delle Telecomnicazioni H. Architecture & Processes 2
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

