Secure Programming A.A. 2022/2023 Corso di Laurea in Ingegneria delle Telecomnicazioni C. SwA: Weakness, Vulnerability, Attacks

Paolo Ottolino

Politecnico di Bari

Secure Programming Lab: Course Program

- A. Intro Secure Programming: «Who-What-Why-When-Where-How»
- **B.** Building Security in: Buffer Overflow, UAF, Command Inection
- C. SwA: Weaknesses, Vulnerabilities, Attacks
- D. SwA (Software Assurance): Vulnerabilities and Weaknesses (CVE, OWASP, CWE)
- E. Security & Protection: Risks, Attacks. CIA -> AAA (AuthN, AuthZ, Accounting) -> IAM, SIEM, SOAR
- F. Architecture and Processes: App Infrastructure, Three-Tiers, Cloud, Containers, Orchestration
- G. Architecture and Processes 2: Ciclo di Vita del SW (SDLC), DevSecOps
- H. Dynamic Security Test: VA, PT, DAST (cfr. VulnScanTools), WebApp Sec Scan Framework (Arachni, SCNR)
- I. Free Security Tools: OWASP (ZAP, ESAPI, etc), NIST (SAMATE, SARD, SCSA, etc), SonarCube, Jenkins
- J. Architecture and Processes 3: OWASP DSOMM, NIST SSDF
- K. Operating Environment: Kali Linux on WSL
- L. Python: Powerful Language for easy creation of hacking tools
- M. Exercises: SecureFlag

SwA: Software Assurance

Cybersecurity Weaknesses Proacture Beign Defensive Coding

- 1. Weakness: Glossary
- 2. Cyber Kill Chain: Attacks Life Cycle
- 3. Attacks and Vulnerabilities: Security Bullettin

C.1 Weaknesses: Glossary

Internet Security Glossary 1/3

Concepts and definitions taken from RFC 4949 (update of RFC2828)

The RFC Series

The RFC Series (ISSN 2070-1721) contains technical and organizational documents about the Internet, including the specifications and policy documents produced by five streams: the Internet Engineering Task Force (IETF), the Internet Research Task Force (IRTF), the Internet Architecture Board (IAB), Independent Submissions, and Editorial.

Browse the RFC Index

HTML (ascending) • HTML (descending) • TXT • XML Note: These files are large.

Browse RFCs by Status

Internet Standard

Draft Standard • Proposed Standard

Best Current Practice

Informational • Experimental • Historic

Uncategorized (Early RFCs)

....

Official Internet Protocol Standards

RFC Status Changes

The RFC series has a long history. The series was <u>originated in 1969</u> by Steve Crocker of UCLA, to organize the working notes of the new ARPAnet research program. Online data access (e.g., FTP) was defined in early RFCs, and the RFC series itself became the first online publication series. For 28 years, this RFC series was managed and edited by the Internet pioneer <u>Jon Postel</u>. The RFC Editor operation was funded by the Defense Advanced Research Projects Agency (DARPA) of the US government until 1998. From 1998 – 2018, the RFC Editor was funded by a contract with the Internet Society, to continue to edit, publish, and catalog RFCs.

C.1a Weaknesses: Glossary

Internet Security Glossary 2/3

Concepts and definitions taken from RFC 4949 (update of RFC2828)

Attacco (Attack): Intentional act, by which an attempt is made to evade the security controls of a system and violate its security policies.

Azione di Minaccia (Threat Action): Effective Assault on a security system.

Agente di Minaccia (Threat Agent): the one who carries out the attack (Attacker)

Minaccia (**Threat**): Potential breach of security, which exists in the presence of a circumstance, skill, action, or event that could violate security and cause harm.

Contromisura (Countermeasure): Action, device, procedure, or technique that reduces a threat, vulnerability, or attack by eliminating or preventing it, minimizing the harm it may cause, or discovering and reporting it so that corrective action can be taken.

C.1b Weaknesses: Glossary Glossary 3/3

Concepts and definitions taken from RFC 4949 (update of RFC2828)

Vulnerabilità (**Vulnerability**): Flaw or weakness in the design, implementation, or operation and management of a system that could be exploited to violate system security policies.

Conseguenza di Minaccia (Threat Consequence): A security breach resulting from a threat action. Includes:

- Exfiltration/disclosure
- inganno (deception)
- denial/interruption
- usurpation

Rischio (Risk): loss perspective expressed as the probability that a given threat will exploit a given vulnerability with a given harmful result.

C.1c Weaknesses: Glossary

Glossary: Attack

The attack is classified according to a number of attributes

Characterization	
Intent	<u>Active</u> : alter system resources and modify its running operations
	 <u>Passive</u>: collect information from the system, without touching its resources
Stage	 <u>On-Line</u>: the information retrieval, analysis and application phases take place in rapid succession <u>Off-Line</u>: The information obtained is analyzed on another system (typically owned by
	the attacker). Only after that, the results are applied on the target system
	 Inside: undertaken by an entity residing within (insider) the security perimeter
Initiation	 <u>Outside</u>: operated from outside the security perimeter, by an unauthorized user (outsider)
Dolivory	 <u>Direct</u>: packets are sent directly to the intended victim
Delivery	 Indirect: the packets are sent to a third party, which sends them to the victim(s).

C.1d Weaknesses: Glossary

Glossary: Vulnerability

Cybernacurity Weaknesse Proactive Design Defensive Coding

Vulnerability: Defect or weakness of a system that could be exploited to violate its security policy

Phase		Weakness
Design	(Specification): progettazione	 Algorythm (es. MTProto, Telegram): Weak hash algorithm Mac & Encrypt (instead of Encrypt & Mac) CBC variant (Infinite Garble Extension)^(*) No PubKeys authentication
Implementation	Realization	Code: Input Validation SQLi, XSS, CSRF, etc
Operation	Working	Esecution - ACL - External Object
Management	Governance (Command & Control)	 Process: Need to Know Segregation od Duties Due Care/Due Diligence Awareness

(*) NIST SP800-38°: <u>http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf</u>

C.1e Weaknesses: Glossary

Glossary: Attack Vector

Careful analysis is required to convey an attack, breakthrough and 3 levels (Strategic, Tactical and Operational)

	eMail	Web	Chat	Physic
Strategic	Social Engineering	Intrigue	Enticement Hookup	Manipulation
Tactical	Phishing	Web vuln (es. XSS) Browser	Attach	USB Key
Operational	Payload (Executable / Script)			

C.1f Weaknesses: Glossary Glossary: Threat Consequence

Various consequences can arise following a successful attack

<u>Unauthorized Disclosure</u> (divulgazione non autorizzata) - threat consequence: a circumstance or event in which an entity gains access to data for which it does not have permission (confidentiality).

Deception (raggiro) - threat consequence: Circumstance or event that could result in an authorized entity receiving false (presumed to be true) data

Disruption (interruzione) - threat cons: circumstance or event that interrupts or prevents the correct operation of the services and functions of a system. (see Denial of Service)

Appropriation (usurpazione) - thread conseq: circumstance or event that results in the control of the services or functions of a system by an unauthorized entity.

C.1g Weaknesses: Glossary Glossary: Unauthorized Disclosure 1/2

The following threat actions can cause unauthorized disclosure

Exposure (esposizione): a threat action in which sensitive data is directly released to an unauthorized entity.

Voluntary Exposure: intentional release of data to unauthorized entities.

Scavenging: the act of "rummaging through" residual data in a system in search of sensitive information; *Human Error: human action or negligence resulting in the inadvertent exposure of data to an unauthorized entity.

*Errore sw/hw. System failure resulting in unintentional data exposure to third parties.

Interception: a threat action in which an unauthorized party gains direct access to sensitive data in transit between authorized senders and recipients. It includes:

Theft: obtaining access to sensitive data through the theft of a physical medium (eg disk, CD, pendrive) in transit (eg shipment) containing the data.

Wiretapping (passive): Monitoring and logging of data in transit between two points in a communication system.

Emanation analysis: direct obtaining of information on data communicated through the monitoring and processing of a signal emitted by a system and containing the data, but not foreseen as a data communication system (cft emanation, TEMPEST?).

C.1h Weaknesses: Glossary

Glossary: Unauthorized Disclosure 2/2

The following threat actions can cause unauthorized disclosure

Inference: threat action in which an unauthorized entity indirectly accesses sensitive data (but not necessarily the data contained in the communication) through deduction from characteristics or byproducts of the communication. It includes:

- Traffic analysis: Obtaining insights into data by observing the characteristics of the communication carrying the data.
- Signal analysis: indirect obtaining of information on communicated data, through the monitoring and analysis of a signal emitted by a system and containing the data, but not intended as a means of communication of the same. (cft emanation).

Intrusion: threat action in which an unauthorized entity gains access to sensitive data by circumventing a system's protections. It includes:

- Physical Intrusion: Gaining unauthorized physical access to sensitive information by circumventing a system's safeguards.
- Penetration: Gaining logical access to sensitive data by circumventing a system's protections.
- Reverse Engineering: acquisition of sensitive data through the disassembly and analysis of the design of a system or a component of it.
- Cryptanalysis: the transformation of encrypted data into plaintext data without prior knowledge of encryption parameters or processes.

C.1i Weaknesses: Glossary

Glossary: Deception

The following threat actions can lead to the scam

"*Masquerade*": action in which an unauthorized party gains access to a system or performs malicious operations by posing as an authorized party.

- Spoof: Attempting to gain access to a system by posing as an authorized user.
- Malicious logic: In the context of masquerade, any hardware, firmware, or software (e.g. Trojan) that appears to provide useful and desirable functions, but instead gains unauthorized access to system resources or tricks the user into forcing him to execute other malicious logic. (cfg malicious logic)

Forgery: thread action where false data misleads an authorized party (see active wiretapping)

- Substitution: Alteration or outright replacement of valid data with false data provided to an authorized party for the purpose of deceiving them.
- Insertion: introduction of false data with the aim of deceiving the receiving party.

Repudians/Repudiation: threat action in which one party deceives the other through the false repudiation of responsibility for an action. (see non-repudiatin service)

- False denial of origin: action in which the issuer of a data denies responsibility for the generation of the data itself.
- False denial of receipt: action in which the recipient of a data denies receipt and possession of the data

C.1j Weaknesses: Glossary Glossary: Disruption

The following threat actions can cause disruption

Disabling (incapacitation): action that prevents or interrupts the operation of a service by disabling one of its components.

- Malicious logic: in this context, any hw, fw, sw (e.g. logic bomb) intentionally introduced into a system to destroy its functions or resources.
- Physical destruction: deliberate destruction of a component of a system with the aim of preventing its functioning.
- Human error: action or negligence that inadvertently leads to the disabling of a component.
- HW or SW error: an error that causes a system component to fail and leads to an interruption of operations.
- Natural Disaster: Natural disaster (fire, flood, lightning) that disables a system component.

Corruption: action that undesirably impairs the operation of a system through the adverse modification of system functions or data.

- Tampering: In the context of corruption, the deliberate alteration of a system's logic, data, or control information to interrupt or prevent the proper operation of a system's functions.
- Malicious logic: any HW, FW or SW (e.g. virus) intentionally introduced into a system to modify its data or functionality.
- Human Error: Human action or negligence resulting in the inadvertent alteration of data or system functions.
- HW or SW error: Error resulting in corrupted data or functions.
- Natural Disaster: affecting operation or data.

Obstruction : threat action that interrupts the provision of system services by hindering/impeding/blocking system operation.

- Interference: disruption to operations resulting from blockage of communications or data.
- Overload: hindrance of the operation of a system through an excessive load to the detriment of the performance of the system or of one of its components (see flooding)

C.1k Weaknesses: Glossary

Glossary: Usurpation

The following threat actions can cause usurpation

Misappropriation / embezzlement : action in which an entity assumes unauthorized access of a logical or physical type to a system or resources.

- service theft: unauthorized use of a service by an unauthorized entity
- Feature Theft: Unauthorized acquisition of hardware, software, or firmware of a system or component.
- data theft: unauthorized acquisition, and use, of data.

Misuse: action that causes a system or component to perform functions or services that are harmful to the system or its safety.

- Tampering: In the context of misuse, deliberately altering the logic, data or control information of a system to cause the system to perform unauthorized functions or services.
- Malicious logic: HW, FW or SW intentionally introduced into a system to perform or control the execution of unauthorized functions or services.
- Permission violation: action, performed by an entity, which exceeds the entity's privileges on the system by allowing the execution of unauthorized functions.

C.2a Attack Life Cycle: Cyber Kill Chain Cyber Kill Chain 1/2

Concept transmuted from the military world by the Lockheed Martin company which owns the brand: each attack requires a life cycle

C.2b Attack Life Cycle: Cyber Kill Chain Cyber Kill Chain 1/3

Concept transmuted from the military world by the Lockheed Martin company which owns the brand: each attack requires a life cycle

Identification, Selection and Profiling of the Target
Create the cyber weapon (contained in a payload), piecing together: • Trojan • Exploit
Transmission of the cyber weapon to the target (tras' 'e sic)
Payload operation
Installing a backdoor (t'e mett' 'e chiatt)
Establishing Client-Server communications with the compromised host
 Data Exfiltration Network Spreading System Disruption

C.2c Attack Life Cycle: Cyber Kill Chain Cyber Kill Chain 2/3

Matrice degli Strumenti di Contrasto

Fase	Detect	Deny	Disrupt	Degrade	Deceive
Reconaissance	Web Analytics	FW AC			
Weaponization					
Delivery	Vigilant User NIDS (ATP)	Proxy Filter (WAF) NIPS (ATP)	AV (ATP)	Queueing	
Exploitation	HIDS (ATP)	Patch ACL	DEP ASLR		
Installation	HIDS (ATP)	Chroot (Container) ACL	AV (ATP)		
Command&Control	NIDS (ATP)	FW ACL	NIPS (ATP)	Tarpit	DNS redirect
Actions on Objectives	Audit Log (SIEM)			QoS	HoneyPot

C.2d Attack Life Cycle: Cyber Kill Chain Cyber Kill Chain 3/3

Matrice degli Strumenti di Contrasto

Acronym/Term	Meaning	Brief Description	Link
FW	FireWall	Filtering TCP/IP flows based on SRC, DST, port	
AC(L)	Access Control (List)		
Vigilant User	User aware of security issues	Awareness and Training	
NIDS / HIDS	Ν		
Proxy Filter (WAF)	Web Application Firewall		
		Detection of virus and malware by:	
	Anti Virus (Advanced Threat	signatures	
AV (AIP)	Protection)	IoC (Index of Compromission)	
		Behavioural	
Patch	Security Update		
DEP	Data Execution Prevention	Prevent the execution of data	https://msrc.microsoft.com/blog/2010/12/on- the-effectiveness-of-dep-and-aslr/
	Address Space Layout	Load programs in not predictable	https://msrc.microsoft.com/blog/2010/12/on-
AJLK	Randomization	locations	the-effectiveness-of-dep-and-aslr/
Chroot (Container)	Change root	Changing the root (/) for a process	
Tarpit	Natural trap	Services on over unused IP addresses	https://labrea.sourceforge.io/Intro-History.html
QoS	Quality of Service		
DNS redirect	Domain Name System redirect	Fake resolutions of hostname	
	Security Information and Event	Collection and correlation of (security)	https://www.gartner.com/reviews/market/securi
	Management	logs	ty-information-event-management
HoneyPot			

C.2e Attack Life Cycle: Cyber Kill Chain Server-side Attack

The perimeter is increasingly impenetrable: fortified and protected. Increasingly difficult to find a way to enter the victim's network.

Server side: directed to the assets in which the information of interest is contained (Espionage), whose resources you want to exploit (Proofitering) or that you want to damage (Damaging).

C.2f Attack Life Cycle: Cyber Kill Chain Client-side Attack 1/3

The perimeter is increasingly impenetrable: fortified and protected. This type of attack allows you to circumvent perimeters and fortifications.

Client side attacks:

Engage users and guide their interaction, such as:

- entice them to click on a link
- open a document
- get to your malicious site.

C.2g Attack Life Cycle: Cyber Kill Chain Client-side Attack 2/3

It is known that people click on everything, if properly intrigued (primed)

Key Part: use social engineering skills to get the user to click

Malicious attack, on vulnerable services of a client machine, by means of :

- Payload: send malicious content
- Trick: entice the user to run the code
- **Reverse**: get a connection or a reverse-shell

Client side attacks are constantly increasing.

C.2h Attack Life Cycle: Cyber Kill Chain Client-side Attack 3/3

There are various ways to use tools initially designed for server-side attacks as well as for client-side attacks

	1 . 🗢
	Weaknesses
_	

	Content	Shape	Trick	Gain
Binary Linux Trojan	Linux Game	Ubuntu deb package	Convince to Install	Reverse Shell
Adobe Reader	'util.printf()' JavaScript Function Stack Buffer Overflow Vulnerability	PDF	Convince to Open	Reverse Shell
VBScript Infection	Office game	Docx Xlsx	Convince to Open	Meterpreter Shell

C.2i Attack Life Cycle: Cyber Kill Chain Information Gathering

Finding useful information

Active:

- Contacts (rubrica)
- FingerPrint

Passive

- Behavioural: Interactions (e.g. purchases) to be able to forge emails
- OSINT
- Links (firends, collegues, relatives)

C.2j Attack Life Cycle: Cyber Kill Chain Evasion Techniques 1/2

Techniques to avoid being identified by End-Point protection systems

Identification of the Running System

SandBox: environment analysis

- CPU ID: identification of the running CPU
- MAC: addresses fo the virtual network interfaces
- Eth: identification of the names provided to the network interfaces (avoiding virtual environment))
- Registry: HKEY_LOCAL_MACHINE\HARDWARE\Description\System

SandBox: behavioural analysis

- HW Properties: low resolution, small HD, no 3D, etc
- SW: user clients (eMail, chat, etc)
- System: uptime
- User: desktop (clean), cookies (too few), FS (clean, no recent)
- DNS: «strange» hostname resolution (es. WannaCry)

C.2k Attack Life Cycle: Cyber Kill Chain Evasion Techniques 2/2

Techniques to avoid being identified by End-Point protection systems

Deleting the Signature available in the AV

1. Binding and splitting (HotFusion)

 *.exe to 'executable client side scripts' (exe2vbs)

3. Code Obfuscation/Morphing

var darklord = unescape(/*this is a false comment*/'%u9090%u9'/*they break the shell code */+ '090%u90' +'90%u9090%uc' + /*to smaller chunk*/'eba%u' + '11fa%'+ 'u291f%ub1c9%ud' +' b33%ud9ce%' +' u2474%' +' u5ef4%u56'+ '31%u030e%u' + '0e56%u0883%uf3' + 'fe%u68ea%u7' + '17%u9014%u'/* this can be an effective */ + "1de8%u759c%u0" + 'fd9%ufefa%' /*technique to bypass*/+ 'u8048%u5288%u' + '6b61%u46dc%u19f2%u6' +'9c9%u94b3%u42f%' + 'u1944%u0af0%u' + '3b86%u508c' + '%u9bdb%u9bad%udd'+ '2e%uc1ea%u8fc' + "1%u8ea3%u2070%" + "ud2c7%u4148%u59" + '07%u39f0%u9d22%uf' + '385%ucd2d%u8f' + "36%uf566%ud73d%u0456%u" + '0b91%u4faa%uf89e%u4' + 'e58%u3176%u61a' + '0%u9eb6%u4e9f%ude3' + 'b%u68d8%u95a4%u8b1' + '2%uae59%uf6e0%u3b85'/*anti-viruses and exploit the target*/+ '%u50f5%u9b4d%u61' + 'df%u7a82%u6d9' + '5%u866%u71f1%udd' + '6%u8d89%' + 'ue0fb%u045d%uc' + '6bf%u4d79%u661b%u2b' + 'db827%u7a%u33b%u3db3%u313' +'7%u4a7%u5fa%u51a%uc4' + "36%u2620%ud638%" + 'u082a%u751%uc7a1%u')

C.21 Attack Life Cycle: Cyber Kill Chain MITRE ATT&CK

MITRE ATT&CK[®] stands for MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK). The MITRE **ATT&CK framework** is a curated knowledge base and model for cyber adversary behavior, reflecting the various phases of an adversary's attack lifecycle and the platforms they are known to target. The tactics and techniques abstraction in the model provide a common taxonomy of individual adversary actions understood by both offensive and defensive sides of cybersecurity. It also provides an appropriate level of categorization for adversary action and specific ways of defending against it.

C.2m Attack Life Cycle: Cyber Kill Chain MITRE ATT&CK

Cybersecurity Weaknesses Productive Design Defensive Coding

The MITRE ATT&CK matrix contains a set of techniques used by adversaries to accomplish a specific objective.

...

Those objectives are categorized as tactics in the ATT&CK Matrix.

The objectives are presented linearly from the point of reconnaissance to the final goal of exfiltration or "impact".

The broadest version of ATT&CK for Enterprise, which includes Windows, macOS, Linux, PRE, Azure AD, Office 365, Google Workspace, SaaS, IaaS, Network, and Containers, categorizes 14 adversary tactics.

C.2n Attack Life Cycle: Cyber Kill Chain MITRE ATT&CK

- **1.Reconnaissance**: gathering information to plan future adversary operations, i.e., information about the target organization
- **2.Resource Development**: establishing resources to support operations, i.e., setting up command and control infrastructure
- 3.Initial Access: trying to get into your network, i.e., spear phishing
- **4.Execution**: trying the run malicious code, i.e., running a remote access tool …
- 5.Persistence: trying to maintain their foothold, i.e., changing configurations
- **6.Privilege Escalation**: trying to gain higher-level permissions, i.e., leveraging a vulnerability to elevate access
- 7.Defense Evasion: trying to avoid being detected, i.e., using trusted processes to hide malware
- 8.Credential Access: stealing accounts names and passwords, i.e., keylogging
- 9.Discovery: trying to figure out your environment, i.e., exploring what they can control
- **10.Lateral Movement**: moving through your environment, i.e., using legitimate credentials to pivot through multiple systems
- **11.Collection**: gathering data of interest to the adversary goal, i.e., accessing data in cloud storage
- **12.Command and Control**: communicating with compromised systems to control them, i.e., mimicking normal web traffic to communicate with a victim network
- 13.Exfiltration: stealing data, i.e., transfer data to cloud account
- 14.Impact: manipulate, interrupt, or destroy systems and data, i.e., encrypting data with ransomware

C.2n1 Attack Life Cycle: Cyber Kill Chain

MITRE ATT&CK

1.Reconnaissance: gathering information to plan future adversary operations, i.e., information about the target organization

2.Resource Development:

establishing resources to support operations, i.e., setting up command and control infrastructure

3.Initial Access: trying to get into your network, i.e., spear phishing

4.Execution: trying the run malicious code, i.e., running a remote access tool

Reconnaissance	Resource	Initial Access	Execution
10 techniques	7 techniques	9 techniques	13 techniques
Active Scanning (3)	Acquire	Drive-by Compromise	Command and Scripting
Gather Victim Host Information (4)	Compromise	Exploit Public-	Interpreter (8)
Gather Victim Identity Information (3)	Accounts ₍₃₎	Facing Application	Container Administration Command
Gather Victim	Infrastructure (7)	External Remote	Deploy Container
Information (6)	Develop Capabilities (4)	Services	Exploitation for
Gather Victim Org	Establish	Additions	Client Execution
Phishing for	Obtain	Phishing (3)	Communication (3)
Information (3)	Capabilities (6)	Replication	Native API
Search Closed Sources (2)	Stage Capabilities ₍₆₎	Removable Media	Scheduled Task/Job (5)
Search Open Technical		Supply Chain Compromise ₍₃₎	Serverless Execution
Search Open		Trusted Relationship	Shared Modules
Websites/Domains (3)		Valid	Software Deployment Tools
Search Victim-Owned Websites		Accounts (4)	System Services (2)
			User Execution (3)
			Windows Management Instrumentation

C.2n2 Attack Life Cycle: Cyber Kill Chain MITRE ATT&CK

5. Persistence: trying to maintain their foothold, i.e., changing configurations
6.Privilege Escalation: trying to gain higher-level permissions, i.e., leveraging a vulnerability to elevate access

7.Defense Evasion: trying to avoid being detected, i.e., using trusted processes to hide malware

8.Credential Access: stealing accounts names and passwords, i.e., keylogging

19 techniques	Privilege Escalation	42 techniques		Credential Access 17 techniques	
Account Manipulation (5)	Abuse Elevation Control	Abuse Elevation Control Mechanism (4)	Obfuscated Files or Information (9)	Adversary-in-the- Middle (3)	
BITS Jobs	Mechanism (4)	Access Token	Plist File Modification	Brute Force (4)	••
Boot or Logon	Access Token Manipulation (5)	BITS Jobs	Pre-OS Boot (5)	Credentials from Password	
Execution (14)	Boot or Logon	Build Image on Host	Process Injection (12)	II Stores (5)	
Boot or Logon	Execution (14)	Debugger Evasion	Reflective Code Loading	Exploitation for Credential Access	
Scripts (5)	Boot or Logon Initialization	Deobfuscate/Decode Files	Rogue Domain Controller	Forced Authentication	
Browser Extensions	Scripts (5)	Deploy Container	Rootkit	Forge Web	
Compromise Client Software Binary	Create or Modify System Process (4)	Direct Volume Access	Subvert Trust Controls (6)	II Credentials (2)	·
Create Account (3)	Domain Policy	Domain Policy Modification (a)	System Binary Proxy	Modify	ł.
Create or Modify	Escape to Host	Execution Guardrails (1)	Execution (13)	Authentication Process (7)	••
Event Triggered	Event Triggered	Exploitation for Defense	Execution (1)	II Multi-Factor	
Execution (16)	Execution (16)	Evasion	Template Injection	Authentication Interception	
External Remote Services	Exploitation for Privilege Escalation	Permissions Modification (2)	" Traffic Signaling (2)	II Multi-Factor	1
Hijack Execution Flow (12)	Hijack Execution Flow (12)	Hide Artifacts (10)	Trusted Developer Utilities Proxy Execution (1)	Request Generation	
Implant Internal	Process	Hijack Execution Flow (12)	Unused/Unsupported	Network Sniffing	
Modify	Scheduled	Impair Defenses (9)	Cloud Regions	OS Credential Dumping (8)	••
Authentication II Process (7)	Task/Job (5)	Indirect Command	Use Alternate Authentication Material (4)	II Steal Application	Γ
Office Application	Valid Accounts (4)	Execution	Valid Accounts (4)	Steal or Forge	
Startup (6)		Masquerading (7)	Virtualization/Sandbox	Authentication Certificates	
Pre-OS Boot (5)		Modify Authentication Process (7)	" Evasion (3)	Steal or Forge	
Task/Job (5)		Modify Cloud Compute	Weaken Encryption (2)	II Kerberos Tickets (4)	•
Server Software		Modify Registry	XSL Script Processing	Steal Web Session	Γ
Traffic Signaling (2)		Modify System Image (2)		Unsecured	
Valid Accounts (4)		Network Boundary Bridging (1)		Credentials (7)	11

C.2n3 Attack Life Cycle: Cyber Kill Chain MITRE ATT&CK

9. Discovery: trying to figure out your environment, i.e., exploring what they can control

- **10. Lateral Movement**: moving through your environment, i.e., using legitimate credentials to pivot through multiple systems
- 11. Collection: gathering data of interest to the adversary goal, i.e., accessing data in cloud storage

Discovery		Lateral	Collection	
30 techniques		9 techniques	17 techniques	
Account Discovery (4)	Remote System Discovery	Exploitation of Remote Services	Adversary-in-the- Middle (3)	
Application Window Discovery	Software Discovery (1)	nternal	Archive Collected	
Browser Bookmark Discovery	System Information Discovery	_ateral Tool	Data ₍₃₎ Audio Capture	
Cloud Infrastructure Discovery	System Location Discovery (1)	Remote Service	Automated Collection	
Cloud Service Dashboard	System Network	Hijacking (2)	Browser Session	
Cloud Service Discovery	Configuration Discovery (1)	Remote Services (c)	Clipboard Data	
Cloud Storage Object Discovery	System Network Connections Discovery	Replication	Data from Cloud	
Container and Resource Discovery	System Owner/User Discovery	Removable Media	Data from	
Debugger Evasion	System Service Discovery	Deployment Tools	Repository (2)	
Domain Trust Discovery	System Time Discovery	Taint Shared Content	Data from Information	
File and Directory Discovery	Virtualization/Sandbox	Jse Alternate	Repositories (3)	
Group Policy Discovery	Evasion (3)	Vaterial (4)	System	
Network Service Discovery			Data from Network Shared Drive	
Network Share Discovery			Data from	
Network Sniffing				
Password Policy Discovery			Data Staged (2)	
Peripheral Device			Email Collection (3)	
Discovery			Input Capture (4)	
Permission Groups Discovery ₍₃₎			Screen Capture	
Process Discovery	_		Video Capture	
Query Registry				

C.2n4 Attack Life Cycle: Cyber Kill Chain MITRE ATT&CK

12. Command and Control:

communicating with compromised systems to control them, i.e., mimicking normal web traffic to communicate with a victim network

- 13. Exfiltration: stealing data, i.e., transfer data to cloud account
- **14. Impact**: manipulate, interrupt, or destroy systems and data, i.e., encrypting data with ransomware

Command and		Exfiltration		Impact
16 techniques		9 techniques		13 techniques
Application Layer Protocol (4)		Automated Exfiltration (1)		Account Access Removal
Communication Through Removable		Data Transfer Size Limits		Data Destruction
Media		Exfiltration Over		Data Encrypted for Impact
Data Encoding (2)	"	Alternative Protocol (3)	"	Data Manipulation (3)
Data Obfuscation (3)	"	Exfiltration Over		Defacement (2)
Dynamic Resolution ₍₃₎	••	C2 Channel		Disk Wipe (2)
Encrypted Channel (2)		Exfiltration Over Other Network Medium (1)	••	Endpoint Denial of Service (4)
Fallback Channels		Exfiltration Over		Firmware Corruption
Ingress Tool Transfer		Medium (1)		Inhibit System Recovery
Multi-Stage Channels		Exfiltration Over Web Service (2)		Network Denial of Service (2)
Non-Application		Scheduled Transfer		Resource Hijacking
Layer Protocol		Transfer Data to		Service Stop
Protocol Tunneling		Cloud Account		System Shutdown/Reboot
Proxy (4)				
Remote Access Software				
Traffic Signaling $_{(2)}$				
Web Service (3)				

C.20 Attack Life Cycle: Cyber Kill Chain MITRE ATT&CK vs Cyber Kill Chain 1/3

The Lockheed Martin Cyber Kill Chain[®] is another well-known framework for understanding adversary behavior in a cyber-attack. The Kill Chain model contains the following stages, presented in sequence:

1.Reconnaissance – Harvests email addresses, conference information, etc.

2.Weaponization – Couples exploit with backdoor into deliverable payload.

3.Delivery – Delivers weaponized bundle to the victim via email, web, USB, etc.

4.Exploitation – Exploits a vulnerability to execute code on a victim's system.

5.Installation – Installs malware on the asset.

6.Command & Control (C2) – Includes command channel for remote manipulation.

7.Actions on Objectives – Using 'Hands on Keyboards' access, intruders accomplish their original goals.

Lockheed Martin gives more detail on their Cyber Kill Chain framework in this graphic. [3]

C.20 Attack Life Cycle: Cyber Kill Chain

MITRE ATT&CK vs Cyber Kill Chain 2/3

Lockheed Martin Cyber Kill Chain®

1.Reconnaissance – Harvests email addresses, conference information, etc.

2.Weaponization – Couples exploit with backdoor into deliverable payload.

3.Delivery – Delivers weaponized bundle to the victim via email, web, USB, etc.

4.Exploitation – Exploits a vulnerability to execute code on a victim's system.

5.Installation – Installs malware on the asset.

6.Command & Control (C2) – Includes command channel for remote manipulation.

7.Actions on Objectives – Using 'Hands on Keyboards' access, intruders accomplish their original goals.

MITRE ATT&CK

1.Reconnaissance: gathering information to plan future adversary operations, i.e., information about the target organization

2.Resource Development: establishing resources to support operations, i.e., setting up command and control infrastructure

3.Initial Access: trying to get into your network, i.e., spear phishing

4.Execution: trying the run malicious code, i.e., running a remote access tool

5.Persistence: trying to maintain their foothold, i.e., changing configurations

6.Privilege Escalation: trying to gain higher-level permissions, i.e., leveraging a vulnerability to elevate access

7.Defense Evasion: trying to avoid being detected, i.e., using trusted processes to hide malware

8.Credential Access: stealing accounts names and passwords, i.e., keylogging
9.Discovery: trying to figure out your environment, i.e., exploring what they can control
10.Lateral Movement: moving through your environment, i.e., using legitimate credentials to pivot through multiple systems

11.Collection: gathering data of interest to the adversary goal, i.e., accessing data in cloud storage

12.Command and Control: communicating with compromised systems to control them, i.e., mimicking normal web traffic to communicate with a victim network

13.Exfiltration: stealing data, i.e., transfer data to cloud account

14.Impact: manipulate, interrupt, or destroy systems and data, i.e., encrypting data with

C.2p Attack Life Cycle: Cyber Kill Chain MITRE ATT&CK vs Cyber Kill Chain 3/3

There are two primary differences between MITRE ATT&CK and Cyber Kill Chain.

1. First, the MITRE ATT&CK framework goes into significantly more depth on how each stage is conducted through ATT&CK techniques and subtechniques. MITRE ATT&CK is regularly updated with industry input to keep up with the latest techniques so defenders update their own practices and attack modeling regularly.

2.Second, the Cyber Kill Chain does not factor in the different tactics and techniques of a cloudnative attack, as discussed above. The Cyber Kill Chain framework assumes that an adversary will deliver a payload, such as malware, to the target environment; a method which is much less relevant in the cloud.

C.2r Attack Life Cycle: Cyber Kill Chain Types of Attacks

Techniques to avoid being identified by End-Point protection systems

...

C.2s Attack Life Cycle: Cyber Kill Chain

Web Application Attack

What Is a Web Application Attack and how to Defend Against It:

https://www.acunetix.com/website security/web-application-attack/

C.2t1 Attack Life Cycle: Cyber Kill Chain

Web Application Attack

B.1g Security In: What is? Agenda The basics of threat modeling. • Three basic kinds of exploits: Buffer Overflows \rightarrow Type-safe Programming Languages 1. Use After Free \rightarrow Type-safe Programming Languages 2. 3. Command injection \rightarrow Input Validation.

If the online developers don't adopt secure coding practices while developing web applications, it may give attackers the prospect to exploit vulnerabilities and compromise web applications and web server security.

Even if web servers are **configured securely** or are secured using network security measures like firewalls, a **poorly coded web application** deployed on the online server may provide a path to an attacker to compromise the online server's security.

C.2t2 Attack Life Cycle: Cyber Kill Chain

Web Application Attack

An attacker can perform different types of attacks on vulnerable web applications to breach web server security.

- Unvalidated Input and File Injection Attacks: Unvalidated input and file injection attacks are performed by supplying an unvalidated input or by injecting files into an internet application.
- **Parameter/Form Tampering:** during this sort of tampering attack, the attacker manipulates the parameters exchanged between client and server so as to switch application data, like user credentials and permissions, price and quantity of products, and so on.
- **Command Injection Attacks:** during this sort of attack, a hacker alters the content of the online page by using html code and by identifying the form fields that lack valid constraints.
- **SQL Injection Attacks:** SQL injection t exploits the safety vulnerability of a database for attacks. The attacker injects malicious code into the strings, later passed on to the SQL Server for execution.
- **Cookie Tampering:** Cookie tampering attacks occur when sending a cookie from the clientside to the server. differing types of toots help in modifying persistent and non-persistent cookies.
- **Session Hijacking:** Session hijacking is an attack during which the attacker exploits, steals, predicts, and negotiates the important valid web session's control mechanism to access the authenticated parts of an internet application.
- Cross-Ste Request Forgery (CSRF) Attack: An attacker exploits the trust of an authenticated user to pass malicious code or commands to the online server
- **Cross-Site Scripting (XSS) Attacks:** during this method, an attacker injects HTML tags or scripts into a target website.

Buffer Overflow Attacks: the planning of most web applications helps them in sustaining some amount of knowledge. If that amount exceeds the storage space available, the appliance may crash or may exhibit some other vulnerable behaviour. The attacker uses this advantage and floods the appliance with too much data, which successively causes a buffer overflow attack, "SELECT * FROM users WHERE login=**\$name** AND password = **\$pwd**"

C.2t3 Attack Life Cycle: Cyber Kill Chain Web Application Attack

An attacker can perform different types of attacks on vulnerable web applications to breach web server security.

Secure Configuration

• ASCII text file Disclosure: source code disclosure may be a results of typographical errors in scripts or due to misconfiguration, like failing to grant executable permissions to a script or directory. This disclosure can sometimes allow the attackers to realize sensitive information about database credentials and secret keys and compromise the online servers.

• **Directory Traversal:** Directory traversal is that the exploitation of HTTP through which attackers can access restricted directories and execute commands outside of the online server's root directory by manipulating a URL.

Security Architecture

• **Denial-of.Service (DoS) Attack:** A DOS attack is meant to terminate the operations of a website or a server and make it unavailable for access by intended users.

What is a DDoS attack? - Protocol

C.2u Attack Life Cycle: Cyber Kill Chain

claim the domain without verification.

https://detectify.com/attack-vector

C.2v Attack Life Cycle: Cyber Kill Chain

Web Attack Using the Browser

Three web attack vectors seem to be responsible for the majority of computer attacks that involve a web browser:

•The attack can incorporate an element of <u>social engineering</u> to persuade the victim to take an action that compromises security. For instance, the victim can supply data to a phishing site or install a program that will turn out to be malicious.

•The attacker can use the browser as a gateway for attacking web applications via techniques such as cross-site scripting (XSS), Cross-Site Request Forgery (CSRF) and Clickjacking.

•The attacker can exploit a vulnerability in the web browser or in local software that the browser can invoke. Such <u>client-side exploits</u> have targeted browser add-ons such as Flash, Adobe Reader and <u>Java Runtime Environment</u> (JRE).

Most attacks include one or two of the three techniques. For instance, <u>Koobface</u> worm targets the user (social engineering to click links) and the web application (hijacking <u>social</u> <u>networking</u> site sessions).

The following series of posts explores these three web browser attack vectors in greater detail, discussing how enterprises can protect themselves against such attacks:

•Mitigating Attacks on the User of the Web Browser

•Mitigating Attacks on Web Applications Through the Browser

•Mitigating Attacks on the Web Browser and Add-Ons

C.3 Attackers & Vulnerabilities

Attackers vs Vendors

Advisories == Security Bullettin

C.3a Attackers & Vulnerabilities

Security Bullettin

Security advisories (aka bulletins) are issued by software vendors

- ▶ public feeds, also private at earlier stages
- advance notification to high-value customers, security companies
- maybe before patches are available
- ► (Q. is that a good idea?)
- public advisory usually when update available

Various people (sys admins, downstream software devs, users...) should monitor and act on advisories.

Android Security Bulletin

Cybersecurity Weaknesses Proactive Design Defensive Coding

The Android Security Bulletin provide fixes for possible issues affecting devices running Android.

- Android platform fixes
- Upstream Linux kernel fixes

Fixes from SOC manufacturers

Bulletin	Languages	Published date	Security patch level
March 2023	English / 日本語 / 한국어 / рýсский / 简体中文 / 繁體中文 (台 灣)	March 13, 2023	2023-03-01 2023-03-05
February 2023	English / 日本語 / 한국어 / рýсский / 简体中文 / 繁體中文 (台 灣)	February 6, 2023	2023-02-01 2023-02-05
January 2023	English / 日本語 / 한국어 / рýсский / 简体中文 / 繁體中文 (台 灣)	January 3, 2023	2023-01-01 2023-01-05
December 2022	English / 日本語 / 한국어 / рýсский / 简体中文 / 繁體中文 (台 灣)	December 5, 2022	2022-12-01 2022-12-05
November 2022	English / 日本語 / 한국어 / рýсский / 简体中文 / 繁體中文 (台 灣)	November 7, 2022	2022-11-01 2022-11-05

C.3b Attackers & Vulnerabilities

Vulnerability Disclosure

The process by which the analysis of these vulnerabilities is shared with third parties is the subject of much debate, and is referred to as the researcher's disclosure policy.

- 1. Coordinated Disclosure: policy under which researchers agree to report vulnerabilities to a coordinating authority, which then reports it to the vendor, tracks fixes and mitigations, and coordinates the disclosure of information with stakeholders including the public. The premise of coordinated disclosure is typically that nobody should be informed about a vulnerability until the software vendor says it is time, or, at max 30 days after the reporting to the coordinating authority.
- 2. Full Disclosure: policy of publishing information on vulnerabilities without restriction as early as possible, making the information accessible to the general public without restriction. In general, proponents of full disclosure believe that the benefits of freely available vulnerability research outweigh the risks, whereas opponents prefer to limit the distribution.
- **3.** Non Disclosure: policy of not sharing at all the vulnerability information, or should only be shared under non-disclosure agreement (either contractually or informally)

C.3c Attackers & Vulnerabilities

The ZDI: Zero Day Initiative

https://www.zerodayinitiative.com/ about/

started by TippingPoint, a network security company

Idea of "buying vulnerability" by crowd-souring discovery

Incentive programme rewarding participants

\$ reward, bonuses like DEFCON attendance

advantages: independence, wider knowledge

and presumably cheaper than direct employment

PRIVACY WHO WE ARE HOW IT WORKS BLOG ADVISORIES LOG IN

THE ZDI MISSION

ന്ന്

Amplify the effectiveness of our team

by creating a virtual community of

skilled researchers.

INITIATIVE

The Zero Day Initiative (ZDI) was created to encourage the reporting of 0-day vulnerabilities privately to the affected vendors by financially rewarding researchers. At the time, there was a perception by some in the information security industry that those who find vulnerabilities are malicious hackers looking to do harm. Some still feel that way. While skilled, malicious attackers do exist, they remain a small minority of the total number of people who actually discover new flaws in software.

Incorporating the global community of independent researchers also augments our internal research organizations with the additional zero-day research and exploit intelligence. This approach coalesced with the formation of the ZDI, launched on July 25, 2005. The main goals of the ZDI are to:

Encourage the responsible reporting of zero-day vulnerabilities through

financial incentives.

Ø

Protect Trend Micro customers from harm until the affected vendor is able to deploy a patch.

Today, the ZDI represents the world's largest vendor-agnostic bug bounty program. Our approach to the acquisition of vulnerability information is different than other programs. No technical details concerning the vulnerability are sent out publicly until the vendor has released a patch.

We do not resell or redistribute the vulnerabilities that are acquired through the ZDI.

Submitting through the ZDI program also relieves you from the burden of tracking the bug with the vendor. We make every effort to work with vendors to ensure they understand the technical details and severity of a reported security flaw, which leaves researchers free to go find other bugs. We will let you know where things stand with all of your own current cases with regards to vendor disclosure. In no cases will an acquired vulnerability be "kept quiet" because a product vendor does not wish to address it.

Interested researchers provide us with exclusive information about previously un-patched vulnerabilities they have discovered. The ZDI then collects background information in order to validate the identity of the researcher strictly for ethical and financial oversight. Our internal researchers and analysts validate the issue in our security labs and make a monetary offer to the researcher. If the researcher accepts the offer, a payment will be

