
Secure Programming Lab
A.A. 2022/2023

Corso di Laurea in Ingegneria delle Telecomunicazioni

A. Introduction

Paolo Ottolino

Politecnico di Bari

Secure Programming Lab
Learning Objectives

1. Getting:
• Cyber Security: Protection needs
• Secure Programming: key Practices
• Nowadays architecture: Development methodologies
That should be involved every time enterprise application is developed.

2. Building the foundation for implementing DevSecOps

3. … and also understand enterprise applications in order to better integrate
with
• the operational environment
• the most possible already developed components
• The business environment

This course collects and merges information from many sources

Secure Programming Lab: Course Program

A. Intro Secure Programming: «Who-What-Why-When-Where-How»

B. Building Security in: Buffer Overflow, UAF, Command Inection

C. Architecture and Processes: App Infrastructure, Three-Tiers, Cloud, Containers, Orchestration

D. SwA (Software Assurance): Vulnerabilities and Weaknesses (CVE, OWASP, CWE)

E. Security & Protection: Risks, Attacks. CIA -> AAA (AuthN, AuthZ, Accounting) -> IAM, SIEM, SOAR

F. Architecture and Processes 2: Ciclo di Vita del SW (SDLC), DevSecOps

G. Dynamic Security Test: VA, PT, DAST (cfr. VulnScanTools), WebApp Sec Scan Framework (Arachni, SCNR)

H. Free Security Tools: OWASP (ZAP, ESAPI, etc), NIST (SAMATE, SARD, SCSA, etc), SonarCube, Jenkins

I. Architecture and Processes 3: OWASP DSOMM, NIST SSDF

J. Operating Environment: Kali Linux on WSL

K. Python: Powerful Language for easy creation of hacking tools

L. SAST: Endogen, Exogen factors, SAST (cfr. SourceCodeAnalysisTools), SonarQube

M. Exercises: SecureFlag

Secure Programs: Introduction

1. Secure Programming: Introduction

2. Cyber Threats: a perspective

3. Weaknesses: Tools (OWASP Top10 Cyber Kill Chain , Glossary (security elements of an
attack)

4. Secure Design: Best Practices (NIST CSF, ZTA, DevSecOps)

5. Code Vulnerabilities: Buffer Overflow, Insecure Input

A.1 Secure Programming: Introduction
Secure Programming

1. Secure Programming: developing software in such a way to
reduce the probability of damages from any usage

2. Cybersecurity (why): reducing the risk (ideally eliminating the
possibility) that the applications could be exploited through
cyber-threats

3. Weaknesses (what): removing defects in architecture and
software that can be exploited to attack companies and its
computer systems

4. Proactive Design (where): integrate the architecture so that
applications can operate more safely

5. Defensive Coding (how): developing application in such a way
that guards against the accidental introduction of software
vulnerabilities

6. Official Birthday (when): November 22nd , 1988 (Morris
Worm)

Cybersecurity

Weaknesses

Proactive Design

Defensive Coding

A.1b Secure Programming: Introduction
Cybersecurity (why): risk of cyber-threats

Quantitative Risk == ARO x SLE

probability (ARO) of loosing money
(SLE) from incidents or attacks
(Threats) by exploiting 1+
vulnerability.

Usually, the security risk is calculated
on an annual basis

The overall Risk is the combination of
all the single impacts.

ARO: Annual Rate of Occurrence → Likelihood (probability), external factor: threat

SLE: Single Loss Expectancy → Impact (money), internal factor: vulnerability

Qualitative Risk (e.g. OWASP Risk Methodology)

A.1c Secure Programming: Introduction
Weaknesses (what): removing exploitable defects in software and architecture

A vulnerability is a hole or a weakness in the
application, which can be a design flaw or an
implementation bug, that allows an attacker to cause
harm to the stakeholders of an application.

Stakeholders include the application owner,
application users, and other entities that rely on the
application.

Examples:

•Lack of input validation on user input

•Lack of sufficient logging mechanism

•Fail-open error handling

•Not closing the database connection properly

For a great overview, check out the OWASP Top Ten
Project.(Open Web Application Security Project) OWASP Top 10

The 10 most important and frequent vulnerabilities identified 2017-2021

https://owasp.org/www-project-top-ten
https://owasp.org/www-project-top-ten

A.1d Secure Programming: Introduction
Proactive Design (where): safer architecture integration

Nowadays application
software should
guarantee interoperability,
that is the ability to
communicate and share
information about
cybersecurity.

No more silos: every
component is part of a
bigger infrastructure,
giving some service and
obtaining some other
back.

Gartner CSMA: Cyber Security Mesh Architecture

A.1e Secure Programming: Introduction
Defensive Coding (how): developing without security bugs

The causes of security breaches are varied, but
many of them owe to a defect (or bug) or design
flaw in a targeted computer system's software.

After finding a moth inside the Harvard Mark II
computer on September 9th, 1947 at 3:45 p.m.,
Grace Murray Hopper logged the first computer
bug in her log book.

She wrote the time and the sentence: “First actual
case of bug being found”.

Nowadays, the term “bug” in computer science is
not taken literally, of course. We use it to talk
about a flaw or failure in a computer program that
causes it to produce an unexpected result or
crash.

The first bug (Source: Naval Historical

Center Online Library Photograph)

A.1f Secure Programming: Introduction
Official Birthday (when): November 22°, 1988 (Morris Worm)

The Morris worm or Internet worm of November 2, 1988, is one of the
oldest computer worms distributed via the Internet, and the first to gain
significant mainstream media attention.

It resulted in the first felony conviction in the US under the 1986 Computer
Fraud and Abuse Act.

It was written by a graduate student at Cornell University, Robert Tappan
Morris, and launched on 8:30 pm November 2, 1988, from
the Massachusetts Institute of Technology network.

The worm exploited several vulnerabilities of targeted systems, including:

•A hole in the debug mode of the Unix sendmail program

•A buffer overflow or overrun hole in the finger network service

•The transitive trust enabled by people setting up network logins with
no password requirements via remote execution (rexec) with Remote Shell (rsh), termed
rexec/rsh

Floppy disk containing the source

code for the Morris Worm, at

the Computer History Museum

https://en.wikipedia.org/wiki/Computer_worm
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Felony
https://www.congress.gov/bill/99th-congress/house-bill/4718
https://www.congress.gov/bill/99th-congress/house-bill/4718
https://en.wikipedia.org/wiki/Cornell_University
https://en.wikipedia.org/wiki/Robert_Tappan_Morris
https://en.wikipedia.org/wiki/Robert_Tappan_Morris
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Sendmail
https://en.wikipedia.org/wiki/Buffer_overflow
https://en.wikipedia.org/wiki/Fingerd
https://en.wikipedia.org/wiki/Login
https://en.wikipedia.org/wiki/Password
https://en.wikipedia.org/wiki/Berkeley_r-commands
https://en.wikipedia.org/wiki/Remote_Shell
https://en.wikipedia.org/wiki/Floppy_disk
https://en.wikipedia.org/wiki/Computer_History_Museum

A.2 Cyber Threats: a perspective
Reduce Losses, Know Occurrences

A.1b Secure Programming: Introduction
Cybersecurity (why): risk of cyber-threats

Quantitative Risk == ARO x SLE

probability (ARO) of loosing money
(SLE) from incidents or attacks
(Threats) by exploiting 1+
vulnerability.

Usually, the security risk is calculated
on an annual basis

The overall Risk is the combination of
all the single impacts.

ARO: Annual Rate of Occurrence → Likelihood (probability), external factor: threat

SLE: Single Loss Expectancy → Impact (money), internal factor: vulnerability

Qualitative Risk (e.g. OWASP Risk Methodology)

SLE could be
reduced, working
on vulnerabilities
(internal factors)

ARO could be only
known since it
depends basely on
threats (external
factors)

➔ Sun Tzu Ping Fa

A.2 Cyber Threats: a perspective
Reduce Losses, Know Occurrences

Sun Tzu Ping Fa

“If you know the enemy (ARO) and know yourself (SLE), you need not fear the result of a hundred battles.

If you know yourself (SLE) but not the enemy (ARO), for every victory gained you will also suffer a defeat.

If you know neither the enemy (ARO) nor yourself (SLE), you will succumb in every battle.”

(from ch. III “Attack by Stratagems”, #18)

SLE ➔ Vulnerabilities: combination of Business and the 3 remaining layers (“Weaknesses”, “Proactive Design”
and “Defensive Coding”.
ARO ➔ Threats: external factors

Let’s have a look at ARO ➔ (Cyber) Threats

A.2a Cyber Threats: a perspective
FBI Attacker Profiles

Cyber Threat Actors

Unstructured
Insider Money

Structured
Crime Money

Espionage Information

Hactivism Socio-Politics

National
Warfare War

Terrorism War

See «An introduction to the cyber threat environment»
https://cyber.gc.ca/en/guidance/introduction-cyber-threat-environment

https://cyber.gc.ca/en/guidance/introduction-cyber-threat-environment

A.2b Cyber Threats: a perspective
Cyber Threats: Historical Trends

Percentages

2017

2018

2019

2020

2021

A.2c Cyber Threats: a perspective
Exploting, Profiteering, Wasting

Exploiting, Profiteering, Wasting

• Exploiting (Intruding): access system in order to:

– Control the performed actions

– Harvest Information

• Profiteering: access to system, in order to take advantage from:

– elaboration

– network capacities (to 3° parties)

• Wasting (Damaging): make the system not accessible from anyone

A.2d Cyber Threats: a perspective

Adversary-Risk mapping (exemplification)

Crime Hacktivism Warfare Espionage

Intruding

Steal Money
Read User-Info

Steal Info Steal Info Steal Info

Profiteering

Spam
DDoS (3° party)

Damaging

DDoS (competitors) Defacement Break System

71% 15% 7% 7%

A.2e Cyber Threats: a perspective
Cyber Attack to Clients 1/3

Motives

Motives

BotNet

Network of computers compromised by malware and controlled remotely for illegal

purposes. You join a botnet unknowingly when your computer is not properly protected and

updated. Botnets pose an insidious threat as an infection can remain undetected and silent

for a long time to be exploited later to produce massive damage to third-party systems

Ramsonware

Restricting access to the resources hosted by an infected device, demanding a ransom to be

paid to remove it

Tailored
Set of stealthy and continuous cyber hacking processes, specially orchestrated to target a

specific entity, damaging only systems with particular requirements

A.2f Cyber Threats: a perspective
Cyber Attack to Clients 1/3

Means

Infection process of subjecting a system, perpetrated in one of the following ways:

Phishing

opening infected emails or documents attached to them

Malware
hidden in programs downloaded by users (e.g. cracks), aimed at disturbing the normal

functioning of a system

Known Vulnerabilities
exploit specific vulnerabilities of out-of-date systems and applications

A.2g Cyber Threats: a perspective
Cyber Attack to Clients 3/3

Adversary-Attack mapping (exemplification for clients)

Crime Hacktivism Warfare Espionage

Intruding

Ramsonware
Tailored

Tailored Tailored

Profiteering

BotNet

86% 5% 9%

A.2h Cyber Threats: a perspective
Historical Background: Operazione Mariposa (2009)

BotNet/Crime: 13 milions systems in 190+ countries

Working Diffusion: developed using the Butterfly kit, a software package sold online for between €500-1500, with

which 10,000 unique software packages have been created and around 700 BotNets built (in addition to

Mariposa)

Scope Used mainly for:

• DDoS (BlackEnergy)

• Hijacking (DNS poisoning)

• Banking

A.2i Cyber Threats: a perspective
Historical Background: RSA SecurID Breach (2011)

Tailored/Espionage (Crime)

Working The attack took place in several stages:

1. Collection of company information

2. Creation of a Phishing email, titled “2011 Recruitment Plan” and containing an xls attachment “2022 Recruitment plan 2011.xls”,

containing a “zero-day” exploit

3. Determination of 2 (small) groups of RSA employees, potential "good" victims

4. Sending the first phih email to the first group

5. Sending the second phishing email to the second group

6. Malicious Code Execution Some user has installed the backdoor (Poison Ivy Trojan).

7. Privilege escalation

8. Access to servers containing SecurID key management information

9. Sending information to external servers and deleting information from RSA servers

Scope Exfiltrate data from RSA to invalidate the OTP authentication mechanisms provided by devices generally used for Web Banking

A.2j Cyber Threats: a perspective
Historical Background: Zero Access (2013)

BotNet/Crime: 2 milions of systems – current most «popular» BotNet

Working Robustness: architecture based on Peer-2-Peer logic (resilience to destruction)

Scope Earn from advertisements, through:

• search results hijacking (Google, Bing, Yahoo)

• redirection to unsolicited sites

A.2k Cyber Threats: a perspective
Historical Background: Carbanak (2015)

Tailored/Espionage-Crime: $ 1 Billion booty

Working The attack took place in several stages:

1. Sending malware by email

2. Gain control of some locations

3. Study of the behavior of employees who operate money transfers

4. Study of the work of IT personnel, to access the central DB

5. play money transfer: adding a "0" to the balance of a low active customer and transferring the created funds

6. theft at ATMs with local solicitors

Scope Collecting physical money:

• Exempt from ATMs (Windows XP hosts)

• Collected via the SWIFT network

A.2l Cyber Threats: a perspective
Historical Background: Hack Back (USA) - Active Cyber Defense Certainty Act of 2019

Hack Back - Conferimento dei poteri di Contrasto (Hack-Back) all’’Intelligence italiana

Working To receive this type of waiver, companies must notify the FBI (National Cyber Investigation Joint Task Force):

1. Details about the counterattack tools in possession

2. How evidence of the initial cyber intrusion is kept

3. Methodologies and mechanisms with which it is intended to avoid damaging the systems of unarmed third

parties

Finalità Protect companies from legal prosecution should they proceed to fight back against the cyber attacker

Proposed Amendment in 2017 by Tom Graves
ACDC act «Highway to Hell»: https://www.congress.gov/bill/116th-
congress/house-bill/3270

https://history.house.gov/People/Listing/G/GRAVES,-Tom-(G000560)/
https://www.congress.gov/bill/116th-congress/house-bill/3270
https://www.congress.gov/bill/116th-congress/house-bill/3270

A.2l Cyber Threats: a perspective
Historical Background: Hack Back (Italy) - Art. 37 del DL 11/2022 (“Aiuti bis”)

Hack Back - Conferimento dei poteri di Contrasto (Hack-Back) all’’Intelligence italiana

Funzionamento Il Presidente del Consiglio dei ministri, acquisito il parere del Comitato interministeriale per la sicurezza

della Repubblica e sentito il Comitato parlamentare per la sicurezza della Repubblica, emana disposizioni

per l'adozione di misure di intelligence di contrasto in ambito cibernetico:

1. in situazioni di crisi o di emergenza

2. a fronte di minacce che coinvolgono aspetti di sicurezza nazionale

3. e non siano fronteggiabili solo con azioni di resilienza,

4. anche in attuazione di obblighi assunti a livello internazionale

Tali misure sono attuate da AISI ed AISE

Finalità Proteggere gli interessi e la sicurezza nazionali, autorizzando misure di contrasto in ambito cibernetico,

scelte secondo criteri di necessità e proporzionalità al rischio calcolato

Art. 37 Disposizioni in materia di
intelligence in ambito cibernetico

https://def.finanze.it/DocTribFrontend/getAttoNormativoDetail.do?ACTION=getArticolo&id=%7b3A3CC33D-5DEC-4A93-BDF4-6139EF398468%7d&codiceOrdinamento=200003700000000&articolo=Articolo%2037
https://def.finanze.it/DocTribFrontend/getAttoNormativoDetail.do?ACTION=getArticolo&id=%7b3A3CC33D-5DEC-4A93-BDF4-6139EF398468%7d&codiceOrdinamento=200003700000000&articolo=Articolo%2037

A.3 Weaknesses: Tools
Introduction

A.1c Secure Programming: Introduction
Weaknesses (what): removing exploitable defects in software and architecture

A vulnerability is a hole or a weakness in the
application, which can be a design flaw or an
implementation bug, that allows an attacker to cause
harm to the stakeholders of an application.

Stakeholders include the application owner,
application users, and other entities that rely on the
application.

Examples:

•Lack of input validation on user input

•Lack of sufficient logging mechanism

•Fail-open error handling

•Not closing the database connection properly

For a great overview, check out the OWASP Top Ten
Project.(Open Web Application Security Project) OWASP Top 10

The 10 most important and frequent vulnerabilities identified 2017-2021

According to Robert P. Cook,
is hard to develop programs
without bugs.

Some useful tools for
avoiding inserting the most
trivial ones, at least:

OWASP Top10: practical for
Web App

CWE: taxonomy for more
theoretycal purposes

CVE: common vulnerabilities
in adopted platforms (and
libraryies)

A.3a Weaknesses: Tools
Introduction

1. OWASP Top10: de facto industry WebAppSec standard
(bare-minimum/starting-point for coding and testing). First
one developed in 2003

2. CWE: de facto weakness types standard for SW & HW
(taxonomy for classifying and defining weaknesses, in order
to differentiate them). Established in 2006

3. CVE: de facto vulnerability enumeration about COTS
(common vulnerability classification, in order to chose
patched products). Presented in 1999

A.3.b Weaknesses: Tools
OWASP Top10

List of main 10 categories of vulnerabilities in Web Applications

• Updated: every 3-4 years

• Web 2.0: First published in 2003 (then 2004, 2007, 2010, 2013, 2017, 2021. see history)

• Data Driven: based on statistics about vulnerability assessment submission

https://www.hahwul.com/cullinan/history-of-owasp-top-10/

A.3.b Weaknesses: Tools
OWASP Top10: Comparison of 2003, 2004, 2007, 2010 and 2013 Releases

[1] Renamed “Broken Access Control” from T10 2003

[2] Split “Broken Access Control” from T10 2003

[3] Renamed “Command Injection Flaws” from T10
2003

[4] Renamed “Error Handling Problems” from T10 2003

[5] Renamed “Insecure Use of Cryptography” from T10
2003

[6] Renamed “Web and Application Server ” from
T10 2003
[7] Split “Insecure Configuration Management” from
T10 2004
[8] Reconsidered during T10 2010 Release Candidate
(RC)
[9] Renamed “Unvalidated Parameters” from T10
2003
[10] Renamed “Injection Flaws” from T10 2007

[11] Split “Broken Access Control” from T10
2004
[12] Renamed “Insecure Configuration
Management” from T10 2004
[13] Split “Broken Access Control” from T10
2004
[14] Renamed “Improper Error Handling” from
T10 2004
[15] Renamed “Insecure Storage” from T10
2004

[16] Renamed “Failure to Restrict URL Access”
from T10 2010
[17] Renamed “Insecure Cryptographic Storage”
from T10 2010
[18] Split “Insecure Cryptographic Storage” from
T10 2010
[19] Split “Security Misconfiguration” from T10
2010

X removed

[] renamed

ok

A.3c Weaknesses: Tools
OWASP Top10:2021

List of 10 main categories of vulnerabilities in Web Applications

A.3d Weaknesses: Tools
MITRE: CWE

https://cwe.mitre.org

MITRE began working on the issue of categorizing software weaknesses as early 1999 when it launched the Common
Vulnerabilities and Exposures (CVE®) List. As part of the development of CVE, MITRE’s CVE Team developed a preliminary
classification and categorization of vulnerabilities, attacks, faults, and other concepts to help define common software
weaknesses. However, while sufficient for

CVE, those groupings are too
rough to be used to identify and
categorize the functionality
offered within the offerings of
the code security assessment
industry. To support that type of
usage, additional fidelity and
succinctness are needed as are
additional details and
description for each of the
different nodes and groupings
such as the effects, behaviors,
and implementation details, etc.

https://cwe.mitre.org/

A.3d Weaknesses: Tools
MITRE: CWE Top 25 1/2

A.3d Weaknesses: Tools
MITRE: CWE Top 25 2/2

The list of the
weaknesses in the 2022
CWE Top 25, including
the overall score of each.
The KEV Count (CVEs)
shows the number of
CVE-2020/CVE-2021
Records from the CISA
KEV list that were
mapped to the given
weakness.

A.3d Weaknesses: Tools
MITRE: CVE

https://cve.mitre.org

The original concept for what would become the CVE List was presented by the co-creators of CVE, The MITRE
Corporation’s David E. Mann and Steven M. Christey, as a white paper entitled, Towards a Common Enumeration of
Vulnerabilities (PDF, 0.3MB), at the 2nd Workshop on Research with Security Vulnerability Databases on January 21-22,
1999 at Purdue University in West Lafayette, Indiana, USA.
From that original concept, a working group was formed (which would later become the initial 19-member CVE Editorial
Board), and the original 321 CVE Records were created. The CVE List was officially launched for the public in September
1999.

Nowadays (24 years later) there are about 200.000 CVE Records

https://cve.mitre.org/
https://cve.mitre.org/cve/search_cve_list.html
https://www.cve.org/Resources/General/Towards-a-Common-Enumeration-of-Vulnerabilities.pdf
https://www.cve.org/Resources/General/Towards-a-Common-Enumeration-of-Vulnerabilities.pdf
https://www.cve.org/ResourcesSupport/Glossary?activeTerm=glossaryCVEList

A.3d Weaknesses: Tools
MITRE: CVE Search

https://cve.mitre.org/cve/search_cve_list.html

https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=log4j

https://cve.mitre.org/cve/search_cve_list.html
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=log4j

A.3d Weaknesses: Tools
MITRE: from Cold-War era

“MITRE began in 1958, sponsored by the U.S. Air Force to
bridge across the academic research community and
industry to architect the Semi-Automatic Ground
Environment, or SAGE, a key component of Cold War-era air
defense. We were founded as a not-for-profit company to
serve as objective advisers in systems engineering to
government agencies, both military and civilian.
We are innovators—from advances in radar technology,
cyber, GPS, cancer research, and aviation collision-avoidance
systems to breakthroughs in evolving disciplines such as
vehicle autonomy, artificial intelligence, and synthetic
biology.
Moreover, as a company that doesn’t compete with
industry, we’re uniquely positioned to convene government,
industry, and academia to collaborate on big societal
challenges, from pandemic response to highway safety to
social justice.
At its core, MITRE’s story is about our people. We’re proud
that more than 9,000 multi-talented and creative individuals
choose to stand with us every day, dedicating themselves to
our mission of solving problems for a safer world.”

https://sage.mitre.org/
https://sage.mitre.org/

A.3d Weaknesses: Tools
MITRE: federal research

“We discover. We create. We lead.
MITRE is trusted to lead—by government, industry, and academia.
The bedrock of any trusted relationship is integrity. For more than 60 years, MITRE has proudly operated federally funded research and development centers, or
FFRDCs. We now operate six of the 42 FFRDCs in existence—a high honor.
Since our inception, MITRE has consistently addressed the most complex whole-of-nation challenges that threaten our country’s safety, security, and prosperity.
Our mission-driven teams bring technical expertise, objectivity, and an interdisciplinary approach to drive innovation and accelerate solutions in the public
interest.
Above all, MITRE is trusted to deliver data-driven results and recommendations without any conflicts of interest.”

(Interestingly, MITRE is not an acronym, though
some thought it stood for Massachusetts
Institute of Technology Research and
Engineering. The name is the creation of James
McCormack, an early board member, who
wanted a name that meant nothing, but
sounded evocative.)

https://www.mitre.org/our-impact/rd-centers

A.4 Proactive Design: Best Practices, Architecture, Processes
Useful Lists of Well-done Actions for Secure Implementation

A.1d Secure Programming: Introduction
Proactive Design (where): safer architecture integration

Nowadays application
software should
guarantee interoperability,
that is the ability to
communicate and share
information about
cybersecurity.

No more silos: every
component is part of a
bigger infrastructure,
giving some service and
obtaining some other
back.

Gartner CSMA: Cyber Security Mesh Architecture

A.4 Proactive Design: Best Practices, Architecture, Processes
Useful Lists of Well-done Actions for Secure Implementation

1. NIST CSF: National Cybersecurity Framework
(focused in How-To manage an incident)

2. ZTA: Zero Trust Architecture («Never Trust,
Always Verify»)

3. DevSecOps: Shift Left (not Implementing
Security but Securing Implementation)

A.4a Proactive Design: Best Practice
NIST Cyber Security Framework

The NIST Cybersecurity
Framework (CSF) is a risk-based
approach designed for businesses
to assess and manage
cybersecurity risk.

Although the framework is
published by the United States
Department of Commerce agency,
the common taxonomy of
standards, guidelines, and
practices that it provides is not
country-specific; this explains why
it is used by many governments,
businesses, and organizations
worldwide.

The five Functions and their subcategories of NIST CSF

A.4.b Proactive Design: Best Practice
NIST Cybersecurity Framework: Functions and Categories

A.4.c Proactive Design: Architecture
ZTA: Zero Trust Architecture

A.4.d Proactive Design: Architecture
ZTA: Evolution of Trust Models & Topologies

Years Name Fashion Remote Description Trust Tools Drawback

‘90s Tier Model

strict separation of

assets

«Circles

of Hell»

No / a

Few

logical separation of

assets by boundaries in

the same physical

location (old-fashioned

Perimeter-Centric).

Inside Yes,

Outside. No

Delegation

Model

FW

IDS

No Remote

’00s Hub & Spoke

connect outlying

points to a central

"hub".

«Airline

Routes»

Some remote connections

secured by VPN tunnels

(strong pub-key

cryptography) converging

at one location

(Centralized Branch

Office)

Outside

could get as

Inside

Central

Visibility &

Control

VPN

SSL-VPN

VDI

RDP

Bottleneck

and SPoF

‘20s Zero Trust

Authentication

GW Distribution

«Never

Trust,

Always

Verify»

Most connections are granted

after careful verification

(Identity, Device, Time,

Geolocation, Security

Posture (Default Deny)

per-

transaction

basis.

Pervasive

Telemetry

PEP

(CASB,

ATP,

DLP, …)

➔SASE

Distributed

network of

PoPs

A.4.e Proactive Design: Architecture
What is ZTA

Zero Trust is an Alternative Cybersecurity model, addressing the shortfalls of perimeter centric protection

Regardless of their location

Data

Workload

Network

Identity

Devices/
Endpoints

Untrusted

TrustedTrusted

Adaptive Policy Enforcement &
Real-time Protection

Policy Decision &
Enforcement

▶ Focusing on Protecting Data rather than access to devices, removing the assumption of perimeter trust.

▶ Enforcing Access Control, by a Decision/Enforcement Point, based not more only on Network rules but on
dynamic Policies calculated on continuous verification.

▶ Assuming Identity as the new front line (together with accessing device), continuously assessing it and his
behaviours.

Data

Workload

Network

A.4.f Proactive Design: Architecture
Pillar Model for development of ZTA

Identities EndPoint Network Services Data

Zero

Trust Architecture

ZTIA ZTEA ZTNA ZTSA ZTDA

Visibility & Analytics: understanding & improving IT Environment

Automation & Orchestration: dynamic workflow management

M
FA

Sm
ar

t
C

ar
d

Identities EndPoints/Devices Network Workload Data

Zero

Trust Architecture

C
o

n
d

it
io

n
al

 A
cc

es
s

C
o

n
fi

gu
ra

ti
o

n
: G

P
O

P
at

ch
in

g:
 W

SU
S,

 I
n

tu
n

e

A
IP

: I
n

fo
 P

ro
te

ct
io

n

D
ef

e
n

d
er

 f
o

r
En

d
p

o
in

t

Lo
g

A
n

al
ys

is
, S

IE
M

Se
c

O
p

s
&

 R
es

p
o

n
se

Se
gm

en
ta

ti
o

n

Fi
le

ri
n

g,
 V

P
N

, D
D

o
S

ZTIA ZTEA ZTNA ZTWA ZTDA

Governance: set of rules and indicators for command & control

This model cames from CISA ZT Maturity Model.

https://www.cisa.gov/sites/default/files/publications/CISA%20Zero%20Trust%20Maturity%20Model_Draft.pdf

A.4.f1 Proactive Design: Architecture
ZTA Pillar & Gartner CSMA: Identities

Identities EndPoint Network Services Data

Zero

Trust Architecture

ZTIA ZTEA ZTNA ZTSA ZTDA

M
FA

Sm
ar

t
C

ar
d

Identities EndPoints/Devices Network Workload Data

Zero

Trust Architecture

C
o

n
d

it
io

n
al

 A
cc

es
s

C
o

n
fi

gu
ra

ti
o

n
: G

P
O

P
at

ch
in

g:
 W

SU
S,

 I
n

tu
n

e

A
IP

: I
n

fo
 P

ro
te

ct
io

n

D
e

fe
n

d
er

 f
o

r
En

d
p

o
in

t

Lo
g

A
n

al
ys

is
, S

IE
M

Se
c

O
p

s
&

 R
es

p
o

n
se

Se
gm

en
ta

ti
o

n

Fi
le

ri
n

g,
 V

P
N

, D
D

o
S

ZTIA ZTEA ZTNA ZTWA ZTDA

A.4.f2 Proactive Design: Architecture
ZTA Pillar & Gartner CSMA: EndPoint

Identities EndPoint Network Services Data

Zero

Trust Architecture

ZTIA ZTEA ZTNA ZTSA ZTDA

M
FA

Sm
ar

t
C

ar
d

Identities EndPoints/Devices Network Workload Data

Zero

Trust Architecture

C
o

n
d

it
io

n
al

 A
cc

es
s

C
o

n
fi

gu
ra

ti
o

n
: G

P
O

P
at

ch
in

g:
 W

SU
S,

 I
n

tu
n

e

A
IP

: I
n

fo
 P

ro
te

ct
io

n

D
e

fe
n

d
er

 f
o

r
En

d
p

o
in

t

Lo
g

A
n

al
ys

is
, S

IE
M

Se
c

O
p

s
&

 R
es

p
o

n
se

Se
gm

en
ta

ti
o

n

Fi
le

ri
n

g,
 V

P
N

, D
D

o
S

ZTIA ZTEA ZTNA ZTWA ZTDA

A.4.f3 Proactive Design: Architecture
ZTA Pillar & Gartner CSMA: Network

Identities EndPoint Network Services Data

Zero

Trust Architecture

ZTIA ZTEA ZTNA ZTSA ZTDA

M
FA

Sm
ar

t
C

ar
d

Identities EndPoints/Devices Network Workload Data

Zero

Trust Architecture

C
o

n
d

it
io

n
al

 A
cc

es
s

C
o

n
fi

gu
ra

ti
o

n
: G

P
O

P
at

ch
in

g:
 W

SU
S,

 I
n

tu
n

e

A
IP

: I
n

fo
 P

ro
te

ct
io

n

D
e

fe
n

d
er

 f
o

r
En

d
p

o
in

t

Lo
g

A
n

al
ys

is
, S

IE
M

Se
c

O
p

s
&

 R
es

p
o

n
se

Se
gm

en
ta

ti
o

n

Fi
le

ri
n

g,
 V

P
N

, D
D

o
S

ZTIA ZTEA ZTNA ZTWA ZTDA

A.4.f4 Proactive Design: Architecture
ZTA Pillar & Gartner CSMA: Workload

Identities EndPoint Network Services Data

Zero

Trust Architecture

ZTIA ZTEA ZTNA ZTSA ZTDA

M
FA

Sm
ar

t
C

ar
d

Identities EndPoints/Devices Network Workload Data

Zero

Trust Architecture

C
o

n
d

it
io

n
al

 A
cc

es
s

C
o

n
fi

gu
ra

ti
o

n
: G

P
O

P
at

ch
in

g:
 W

SU
S,

 I
n

tu
n

e

A
IP

: I
n

fo
 P

ro
te

ct
io

n

D
e

fe
n

d
er

 f
o

r
En

d
p

o
in

t

Lo
g

A
n

al
ys

is
, S

IE
M

Se
c

O
p

s
&

 R
es

p
o

n
se

Se
gm

en
ta

ti
o

n

Fi
le

ri
n

g,
 V

P
N

, D
D

o
S

ZTIA ZTEA ZTNA ZTWA ZTDA

A.4.f5 Proactive Design: Architecture
ZTA Pillar & Gartner CSMA: Data

Identities EndPoint Network Services Data

Zero

Trust Architecture

ZTIA ZTEA ZTNA ZTSA ZTDA

M
FA

Sm
ar

t
C

ar
d

Identities EndPoints/Devices Network Workload Data

Zero

Trust Architecture

C
o

n
d

it
io

n
al

 A
cc

es
s

C
o

n
fi

gu
ra

ti
o

n
: G

P
O

P
at

ch
in

g:
 W

SU
S,

 I
n

tu
n

e

A
IP

: I
n

fo
 P

ro
te

ct
io

n

D
e

fe
n

d
er

 f
o

r
En

d
p

o
in

t

Lo
g

A
n

al
ys

is
, S

IE
M

Se
c

O
p

s
&

 R
es

p
o

n
se

Se
gm

en
ta

ti
o

n

Fi
le

ri
n

g,
 V

P
N

, D
D

o
S

ZTIA ZTEA ZTNA ZTWA ZTDA

Governance
Orchestration
Visibility

A.4.f6 Proactive Design: Architecture
ZTA Pillar & Gartner CSMA: GOV

Identities EndPoint Network Services Data

Zero

Trust Architecture

ZTIA ZTEA ZTNA ZTSA ZTDA

M
FA

Sm
ar

t
C

ar
d

Identities EndPoints/Devices Network Workload Data

Zero

Trust Architecture

C
o

n
d

it
io

n
al

 A
cc

es
s

C
o

n
fi

gu
ra

ti
o

n
: G

P
O

P
at

ch
in

g:
 W

SU
S,

 I
n

tu
n

e

A
IP

: I
n

fo
 P

ro
te

ct
io

n

D
e

fe
n

d
er

 f
o

r
En

d
p

o
in

t

Lo
g

A
n

al
ys

is
, S

IE
M

Se
c

O
p

s
&

 R
es

p
o

n
se

Se
gm

en
ta

ti
o

n

Fi
le

ri
n

g,
 V

P
N

, D
D

o
S

ZTIA ZTEA ZTNA ZTWA ZTDA

A.4.g Proactive Design: Architecture
NIST Cyber Security Framework: Category mapping for Pervasive Telemetry

Identify

Protect

Detect

Respond

Recover

Functions

Asset Management

ID.AM

Business Environment

ID.BE

Risk Assessment

ID.RA

Risk Management Strategy

ID.RM

Supply Chain Risk Management

ID.SC

Identity Management,

Authentication, and Access

Control

PR.AC

Awareness and Training

PR.AT

Data Security

PR.DS

Information Protection

Processes and Procedures

PR.IP

Maintenance

PR.MA

Protective Technology

PR.PT

Anomalies and Events

DE.AE

Security Continuous Monitoring

DE.CM

Detection Processes

DE.DP

Response Planning

RC.RP

Communications

RC.CO

Analysis

RS.AN

Mitigation

RS.MI

Improvements

RS.MI

Recovery Planning

RC.RP

Improvements

RC.IM

Communications

RC.CO

Categories

As mapped by NCCoE in the paper “Implementing a ZTA”

https://www.nccoe.nist.gov/projects/implementing-zero-trust-architecture

A.4.h Proactive Design: Architecture
ZTA: IT Functions: security & protection

Several tools enabling ZTA

for Hybrid Cloud.

Those could be classified on:

•Infrastructure: tools for security management of the Hybrid Cloud components, its usage readiness and configuration. That is, by static

point of view, focused on the management of the service items and their status. Without direct relation to any specific connection,

interaction, activity (about 2/3 of the tools).

•Transaction: tools for security & management of any specific connection, interaction, activity amidst the Hybrid Cloud. That is, by

dynamic point of view, focused on access, about the usage of the configuration set by the infrastructure tool (about 1/3 of the tools). Often

integrated in SASE platforms and SD-WAN as well.

Pillar(s) Function Name Enforce Enabling

Identity IGA Identity Governance (SoD) Authorizations: Permissions Identity Lifecycle.

Identity CIEM Cloud Infrastructure Entitlement

Management

Roles: Entitlements Business & Application Lifecycle

Identity PAM Privileged Access Management Authorizations: Privileged Privilege Administration

EndPoint CMDB Asset Mgmt Item identification Item Configuration

EndPoint MDM Mobile Device Management Patching Vulnerability Management; Change &

Configuration Mgmt

Network CNS Cloud Network Security Segregation & Segmentation Micro-Segmentation

Network

Workload

DDoS Anti-DDoS Protect against obscuration Application Availability

Workload SCM SW Configuration Mgmt Config & Change Approval Workflow

Workload CSPM Cloud Security Posture Mgmt Secure Configuration Compliance

Workload CWP Cloud Workload Protection SW Mgmt Configuration Management

Workload XDR eXtended Detection & Response Threat Detection Block advanced malware, exploits and

fileless attacks

Workload IRM Integrated Risk Management Security Dashboard Security Governance by KPI

Data CKMS Cloud Key Mgmt Service Secure Key Mgmt Centralized key control in hybrid cloud

A.4.i Proactive Design: Architecture
ZTA: Platforms for protecting infrastructure

Pillar(s) Function Name Enforce Enabling

Identity

Workload

CASB Cloud Access Security Broker threats, and data leakage

identification

Access to cloud applications and

shadow IT

EndPoint SWG Secure Web Gateway URL filtering Access to Internet

EndPoint ATP Advanced Threat Prevention Blocking threats Spreading across endpoints and nets.

EndPoint

Network

DNS-Sec DNS Security predicting, blocking, and

tracking malicious activity

Access to Internet

Network VPN Virtual Private Network threats, and data leakage Access to shadow IT

Network SD-WAN SW Defined WAN intelligent unified view and

simplified mgmt

Traffic Prioritization, WAN

Optimization, converged backbones)

Network FWaaS FW as a Service Next Generation Rules Net Filtering

Data DLP Detecting/Blocking

Exfiltration

Access to Company Data

A.4.i Proactive Design: Architecture
ZTA: Platforms for Protecting Transaction ➔ SASE

Not all SASE vendors do implement all the listed ZTA functions

A.4f Proactive Design: Processes
SDLC and Security: DevSecOps

Secure Code Review is a process which
identifies the insecure piece of code
which may cause a potential vulnerability
in a later stage of the software
development process, ultimately leading
to an insecure application.

When a vulnerability is detected in
earlier stages of SDLC, it has less impact
than the later stages of SDLC – when the
insecure code moves to the production
environment.

In the SDLC, the secure code review
process comes under the Development
Phase, which means that when the
application is being coded by the
developers, they can do self-code review
or a security analyst can perform the
code review, or both.

Software Development Life Cycle and Security

A.4f Proactive Design: Processes
DevSecOps: Shift Left Approach

Shift Left is a practice intended to find and prevent defects early in the software delivery process. The

idea is to improve quality by moving tasks to the left as early in the lifecycle as possible. Shift Left testing means

testing earlier in the software development process.

A.4g Proactive Design: Processes
DevSecOps: Shift Left Approach

The Technology Driving Shift Left Security

DevOps organizations realized that they must also shift security left to avoid introducing more security risks than security and operations
teams can manage. This movement is known as DevSecOps, and uses a variety of tools and technologies to close the gap and enable rapid,
automated security assessment as part of the CI/CD pipeline:
•Static Application Security Testing (SAST) is used to scan source code for known weaknesses and insecure coding practices. In DevSecOps,
this testing is typically integrated into developers’ development environments for immediate security risk feedback.
•Software Composition Analysis (SCA) analyzes software to detect known software components, such as open source and third-party
libraries, and identify any associated vulnerabilities. SCA complements SAST by finding vulnerabilities not detectable by scanning source code.
•Dynamic Application Security Testing (DAST) scans applications in runtime, prior to deployment into production environments. This enables
an outside-in approach to testing applications for exploitable conditions that were not detectable in a static state.
•Runtime Application Self-Protection (RASP) runs alongside applications in production to observe and analyze behavior and notify or block
anomalous and unauthorized actions. While this may place additional infrastructural burden on production environments, it delivers a real-
time look into potential application security risks.
•Web Application Firewalls (WAF) monitor traffic at the application level and detect potential attacks and attempts to exploit vulnerabilities.
WAFs can be configured to block certain potential attack vectors even without remediating the underlying software vulnerabilities.
•Container image scanning tools can continuously and automatically scan container images within the CI/CD pipeline and in container
registries, prior to deployment into production environments. This enables identification of vulnerabilities or unsafe components, and
provides remediation or mitigation guidance directly to developers and DevOps teams.
•Cloud Security Posture Management (CSPM) solutions identify misconfigurations in cloud infrastructure that could leave potential risks and
attack vectors unchecked. CSPM solutions can recommend or automatically apply security best practices based on an organization’s internal
policies or third-party security standards.

https://www.aquasec.com/cloud-native-academy/supply-chain-security/sast-security/
https://www.aquasec.com/cloud-native-academy/supply-chain-security/software-composition-analysis-sca/
https://www.aquasec.com/cloud-native-academy/application-security/application-security/
https://aquasecstaging.wpengine.com/products/cspm/

A.5 Code Vulnerability: Security Bugs
Definition

A.1e Secure Programming: Introduction
Defensive Coding (how): developing without security bugs

The causes of security breaches are varied, but
many of them owe to a defect (or bug) or design
flaw in a targeted computer system's software.

After finding a moth inside the Harvard Mark II
computer on September 9th, 1947 at 3:45 p.m.,
Grace Murray Hopper logged the first computer
bug in her log book.

She wrote the time and the sentence: “First actual
case of bug being found”.

Nowadays, the term “bug” in computer science is
not taken literally, of course. We use it to talk
about a flaw or failure in a computer program that
causes it to produce an unexpected result or
crash.

The first bug (Source: Naval Historical
Center Online Library Photograph)

Buffers contain
a certain
amount of data
that limits it to
hold limited
data for a
limited time as
multiple

A.5 Code Vulnerability: Buffer Overflow
Definition

Buffers contain a certain amount of
data that limits it to hold limited data
for a limited time as multiple
application uses this mechanism of
the buffer. Resultantly a situation
arrives when further data is pushed
into a buffer, such a condition refers
to a term called a buffer overflow.

It is a flaw that arises when software that writes data to a buffer surpasses the buffer capacity, resulting in
overwriting of neighboring memory locations. That is, too much information is transmitted to a repository that
does not have enough space, and this information is gradually replaced by neighboring repository data.
For example, a buffer for login data can be configured to require an 8-byte username and password to be
entered, so if a transaction contains 10 bytes (i.e., 2 bytes more than expected) input, the program can write
down excess data over the buffer limit.

A.5 Code Vulnerability: Insecure Input
Code Injection

Code injection is a type of attack that allows
an attacker to inject malicious code into an
application through a user input field, which
is then executed on the fly.

Code injection vulnerabilities are rather rare,
but when they do pop up, it is often a case
where the developer has attempted to
generate code dynamically.

Preventing code injection attacks usually
comes down to reconsidering the need to
dynamically execute code, especially where
user input is involved.

Example of Code Injection

A.5 Code Vulnerability: Insecure Input
von Neumann vs Harward Architecture

Tricking an application to treat provided data as code

von Neumann vs Harward

Program & Data together→Metadata Program in a place, Data in another→ Limited
interactions

A.5b Code Vulnerability: Buffer Overflow, Insecure Input
Secure Software Alliance

SSA Goals
•Creation of software security awareness at all
levels in the organization

•Stimulate activities that contribute to increase
software security.

•Trustee of the (open source) Secure Software
Framework

•Develop a secure software certificate model for
software based upon a positive advice from an
inspection-organization accredited by the SSA.

•Follow and contribute to (international)
initiatives in the area of secure software
development

•Work together with other private and public
organizations with similar interests.

	Slide 1: Secure Programming Lab A.A. 2022/2023 Corso di Laurea in Ingegneria delle Telecomunicazioni A. Introduction
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

